wreess

SEPTEMBER 1980 50p

Floating-bridge amplifier TV from satellites

Electronic cryptography

Wen gets it together....

WW-004 FOR FURTHER DETAILS
wireless world

Floating-bridge amplifier Iv from satellites Electronic cr Yptography

. . . catch this bus with Farnell
and.arrive economically at an efficient ATE workstation. Comprehensive testing under low cost desk computer control.

Manual systems too.

DON'T GAMBLE
 WITH PERFORMANCE BUY

LEVELL VOLTMETERS

A.C. MICROVOLTMETERS

voltage \&
 \qquad
 $\mathrm{d} \pm 1 \mathrm{~F}=0 \mathrm{~V}$ fsd 1 kH

RESPONSE
$\pm 3 \mathrm{~dB}$ from 1 Hz to 3 MHz,
$\pm 0.3 \mathrm{~dB}$ from 4 Hz to $1 \mathrm{MHz}, ~$
 HF cut $100 \mathrm{KHz}, 10 \mathrm{KHz}$ or 35 OHz .
INPUT IMPEDANCE
Above $50 \mathrm{mV}: 10 \mathrm{M} \Omega<2$ OpF.
On $50 \mu \mathrm{~V}$ to $50 \mathrm{mV} \rightarrow 5 \mathrm{MP}<$
150 mV at fsd.
AMPLIFIER OUTPUT
$\underset{\substack{\text { ™ } \\ \text { TM }}}{ } £ 145$ trouble to ensure that with a QUAD 33 in the Cancel position, the voltage delivered to your Cancel position, the voltage delivered to your of the voltage the pickup will produce into a stated passive load Nothing produce into taken away.
A visiting journalist recently suggested that we should not do this. Final adjustment should be done by ear, he said

What an opportunity!

After all we know that if we add a little warmth with a subtle boost in the lower middle and balance this with an ever so gentle hump in the quack region ($2-3 \mathrm{kHz}$), we can make most programmes sound superficially more impressive. Come to that, why not change the $3180 \mu \mathrm{~S}$ to $5000 \mu \mathrm{~S}$ adding a little more 'heft' that most people will fall for. We could even make a special model for the boom and tizz brigade
Been to any live concerts recently ?
For further details on the full range of UAD products write to
The Acoustical Manufacturing Co. Ltd. funtingdon, Cambs. PE18 7DB

elephone : (0480) 5256

QUAD 戠

THE LEADING EXHIBITION OF COMPUTERS, PERIPHERALS AND SYSTEMS

will be in the Grand Hall OLYMPIA, LONDON Nov 4, 5 \& 6, 1980 CAN YOU AFFORD TO MISS BRITAIN'S BIGGEST COMPUTER EXHIBITION?
Sponsored by "Computer Weekly," "Data Processing," "Practical Computing" and "Systems International" and with the support of "Electron", "Electronics Weekly" all members of IPC Business Press, the worlds largest publisher of specialist and business journals.
GET YOUR TICKETS NOW - SAVE MONEY!
If you send your request for tickets now you will pay only $£ 1.50$ per ticket (tickets $£ 2$ at the door) To. Compec Tickets, IPC Exhibitions, 40 Bowling Green Lane, London EC1R ONE Tel 01-837 3636
Please send me...........advance registration tickets for Compec 80 at the privilege price of $£ 1.50$ per ticket.
Name_ Address_-
$\begin{aligned} & \text { *Tickets } £ 1.50 \text { in advance, } £ 2 \text { at the door. Applications received after October 3rd, cannot be accepted. } \\ & \text { TRADE ONLY - NO SCHOOL PARTIES - NO ADMITTANCE UNDER } 16\end{aligned}$ all Cheques/money orders to be made payable to ipc business press ltd in uk sterling

Amcron INDUSTRIAL MUSCLE

Model - M600

* POWER RESPONSE DC $-20 \mathrm{KHz} \pm 1 \mathrm{~dB}$
* OUTPUT POWER IN EXCESS OF 1.5 kW INTO 2.75 Ohm LOAD (CONTINUOUS R.M.S.)
\star HARMONIC DISTORTION LESS THAN O.05\% D
PLUG-IN MODULES: CONSTANT VOLTAGE/CURRENT, PRECISION OSCILLATORS * UNIPOLAR AND
BIPOLAR DIGITAL INTERFACES, FUNCTION GENERATORS, AND MANY OTHERS.
夫 OUTPUT MATCHING TRANSFRRMERS AVAILABLE TO MATCH VIRTUALLY ANY LOAD
\star FULL OPEN AND SHORT CIRCUIT PROTECTION GUARANTEED STABLE INTO ANY LOAD
\star TWO UUITS MAY BE CONNECTED TO PROVIDE UP TO 4 kW .
\star INERLOCK CAPABLLITY FOR UP TO EIGHT UNITS.
\star - -YEAR PARTS AND LABOUR WARRANTY
For full details on all Amcron Products write or phone Chris Flack

Carston Electronics

[^0]C. $500 \mathrm{MHz} 30 \mathrm{~mW}-100 \mathrm{~W}$ HEWLETT PACKARD
 Mintrame

200

New stock is added daily. For latest details on 'standard' equipment or for help in locating your SPECIALIST NEEDS ring us today!

Miviziz

Today Carston Value makes even more sense

-all equipment for sale is fully refurbished to manufacturers' original specifications

	$\underset{\substack{\text { Prices } \\ \text { from }}}{ }$	
/3a744384. DC-2MHz four		PM5776 3V/50 ת. $1 \mathrm{~Hz}-100 \mathrm{Mz}$ Rise/fall Times less than 1 ns .
chanel. 20 mv sensitivity. Writing	${ }_{650}$	Recorders and Signal
$56481 / 386 / 28667.0 \mathrm{DC}$-10 MHz Dual		Conditioning Equipment
age oscilloscope	750	${ }_{\text {AR220 }}$ AMPEX
Storae $1350 \mathrm{cm/4} / \mathrm{s}$ Variale	2225	
	450	comer
Phase Met		BRUNO WOELK
DRANETZ		${ }_{\text {BRe }}$ ME1022. Wow and fluter
		102C. Wow and fluter meter
	400	BRUEL \& KJAER
Power Meters MARCONI SAUNDERS		og recording of AC: $2 \mathrm{~Hz}-200 \mathrm{kHz}$
10 MHz-40 GHz 10		Zfoool Linear Pat DC: 10.35 mV
10 MHz-12.4		Se Linar Pal
$1 \mathrm{DO}^{\text {M Hz-18. }}$ 2 4 GHz		
		ZROOO6 75 dB Potentio
	130	10V/cm
Power Supplies		${ }^{\text {Bress }}$
ADVANCE		16 speeds
Inverter	125	${ }^{2} 2300 x$-Y Y Single pem
BRANDENBU		HEWLETT PACK
5 mA	150	
	55	${ }_{7046 A}$ TWo pen A3 $0.25 \mathrm{mV} .5 \mathrm{~V} / \mathrm{Cm}$
FLUKE		KUDELSKI
	350	Nagra.4.2.SP Protes
ITT		PHIL
	90	PM
MARCONI		
	6_{0}	Store 4.4. Uses $\mathrm{D} / 4 / 4 \mathrm{inch}$ magnetic
OLTRONIX		tape. Will record 4 F.M. channels.
5 KV 10		
${ }_{\substack{\text { chen } \\ \text { current limi } \\ \text { out }}}$	60	S150/6151 12 channel UV
RENSE		SMITHS INDUSTRIES
OCR 300.2.50.30		
DBELECTRONICS		YOKOGA
150. I.C. pulse genera	50	3046. 10 inch Chart Single
EH RESEARCH		
	220	${ }^{3047} .2$ Pen Version of 3046
1392LI. 10 Hz -50 MHz 10V/508		Signal Sources and
RT5ns	175	Generators
		BOONTON
0.5V 51508.30 Hz .50 MHz RT 5	100	${ }_{\text {cole }}$
	175	DYMAR
PACKARD		
/503. Double pulse O/P		GOULD ADVANCE
		tackar
7 Tn	350	0 OP SV RMS
PHILIPS PM5705. $0.1 \mathrm{~Hz}-10 \mathrm{MHz}$. Typical RT		

${ }^{6500}$
75
90
750
59
59
59

2350
545
275
995

1215

350

운ำธึః

HEWLETT Pnalysers
$8433 A$ PTCARD
850

NELLSON ROSS
011. DC. 22 kHFHz : Bocib

Quality Second-User Instrumentation

The product you buy from Second User Electronics is the same as from the manufacturer - same performance, same measuring capability, in mos cases even the same guarantee.
We offer top quality, general purpose test equipment, fully maintained, at savings of up to 50% on manufacturers list price - so you make the very most of your capital budget. When equipment is only required for short term use it just doesn't make sense to buy ew.
We give 90-day warranties as standard, with many specified items on a 12 month extension - and we beat manufacturers delivery dates. Buy equipment at down-to-earth prices. You don't need to buy new, buy SUE. On 01-897 3759.

1223A Hewlett-Packard
$0-15 \mathrm{MHz}, 2 \mathrm{mV}-10 \mathrm{~V} / \mathrm{Div}$, time base $100 \mathrm{~ns}-2 \mathrm{~s} /$ Div, writing speed $1 \mathrm{~cm} / \mu$. From $£ 800$

OS2200 Advance

$0-25 \mathrm{MHz}, 10 \mathrm{mV}-50 \mathrm{~V} /$ Div, time base 100ns-2s/Div, sweep delay, writing speed $1 \mathrm{~cm} / \mu \mathrm{s}$.

General Purpose

 Oscilloscopes454 Tektronix
$0-150 \mathrm{MHz}, 5 \mathrm{mV}-10 \mathrm{~V} /$ Div, time base
$0.05 \mu \mathrm{~s}-0.5 \mathrm{~s}$ $0.05 \mu \mathrm{~s}-0.5 \mathrm{~s} /$ Div, sweep delay.

455 Tektronix $0-50 \mathrm{MHz}, 5 \mathrm{mV}-5 \mathrm{~V} /$ Div, time base 5ns-0.5s/Div, sweep delay.

From $£ 1000$

465 Tektronix

465 Tektronix
$0-100 \mathrm{MH}, 5 \mathrm{mV}-5 \mathrm{~V} /$ Div, time base 5ns-0.5s/Div, sweep delay.

485 Tektronix
$0-350 \mathrm{MHz}$, $5 \mathrm{mV}-5 \mathrm{~V} / \mathrm{Div}$, time base 1ns-0.5s/Div, sweep delay

1720A Hewlett-Packard $0-275 \mathrm{MHz}, 10 \mathrm{mV}-5 \mathrm{~V} /$ Div, time base
$10 \mathrm{~ns}-0.5 \mathrm{~s} /$ Div, sweep 10ns-0.5s/Div, sweep delay. £1600

Digital Voltmeters

7065 6½ Digit Microprocessor Multimeter Solartron
Scale length $1,400,000$, modes: $D C, A C$, Ohms,
Ranges: $=: 10 \mathrm{mV}-1000 \mathrm{~V}$, resolution $1 \mu \mathrm{~V}, \sim: 100 \mathrm{mV}-1000 \mathrm{~V}$, resolution $1 \mu \mathrm{~V}, \Omega: 10-10 \mathrm{M} \Omega$, resolution $1 \mathrm{~m} \Omega$, Typical accuracy: $=0.005 \%, \sim 0.1 \%$,
$\Omega 0.007 \%$.
$£ 840$
7055 5½ Digit Microprocessor Multimete, Solartron
Scale length 200,000, modes DC, AC, Ohms.
Ranges: $=: 10 \mathrm{mV}-1000 \mathrm{~V}$, resolution $1 \mu \mathrm{~V}, \sim: 100 \mathrm{mV}-1000 \mathrm{~V}$, resolution $1 \mu \mathrm{~V}, \Omega: 100 \Omega-10 \mathrm{M} \Omega$, resolution $10 \mathrm{~m} \Omega$, Typical accuracy: $=0.01 \%$ ${ }^{\sim} 0.1 \%$, $\Omega 0.03 \%$.

From $£ 1200$

From $£ 715$

Think of KCM as your monitor production line...

 off the shelf.

Turn to page 3 of your ITT Instrument Services catalogue for a list of top names Thandar (Sinclair), Fluke, Avo, Keithley and Norma. Compare performance and specification then phone or telex Harlow or any local ITT office and we'll deliver off the shelf.

The ITT Instrument Services
catalogue is your key to fast delivery and technical back-up for a vast range of quality instruments. Get it off the shelf.
ITT Instrument

Services

CM20 2DF
Tel: (0279)
29522.

TMT instrument services
the only way to buy.
 WW - 021 FOR FURTHER DETAILS

THE FOR. 1004 ANEW WIDEBAND GRAPHICAL RECORDER

9 Recording Modes

The FOR1004 is the first of a new generation from Medelec. A highly versatile graphical recorder, it has been specially developed for wide
ranging applications in research and anging applications in research and
ndustry. In both performance and economy it has many advantages over conventional instrumentation. There are nine recording modes Il push button controlled, which permit the optimum presentation
of most graphical data. Triggering is fully automatic and displayed signals can be monitored via an internal oudspeaker. The fast response tim and wide range timebase allows the detailed examination of transients and trends.
medelec 婧
Industrial Products

Attractive rew styling, and ease of operation combine to make the new instrument.

Simultaneous View Record Four High Input Signal Channels
High Resolution, Inexpensive Records. For further information please contact: Medelec Limited Manor Way Old Woking
Surrey GU22 9JU England Surre Y GU22 9JU England
Tel: Woking (04862) 70331 Telex: 859141 Medlec G
A Vickers Limited Company

CAMBPIDGE LEARNifa

It's faster and more thorough than classroom learning: you pace
yourself and answeq questions on each new aspectt as you go. This yourself and answer questions on each new aspect as you go. This
gives rare satisfaction . you know that you are really learning and
without gives rare satisfaction - you. Nnot
without mindess drudgery. With
become your own best teacher.
Uecome your own best teacher.
Understand Digital Electronics
Understand Digital Electronics
In the years anead digital electronics will play an increasing part in
your life. Calculators and digital watches mushroomed in the 1970's In the years ahead digital electronics will play an increasing part in
your life . Calculators and digital watches mushroomed in the 1970 s.
-soon we will have digital car instrumentation, cash cards, TV
messan will messages from friends and electronic mail.
Atter completing these books you will have broadened your career
prospects and increased you knowledge of the fast-changing world
aroud you prospects and increased you knowledge of the fast-changing world
around you.
and DIGITAL COMPUTER
ELECTRONICS $£ 7.00$ This course is designed as This course is designed as an
introduction to digitial electronics and
is written at a pace that suits the raw
beginner. N No mathematical is written at a pace that suits the raw
beginner. No ma the matical
know owedge is assumed other than the
use of simple assumed the use of s
and
expecte and no electronic knowledge is
expected at all. The course moves
painstakingly through all the basic painstakingly through all the basic
concepts of digital electronics in a
simple and concise fashion simple and concise fashion: question
and answers on every hage make sum
that the points are understood. that the points are undeestood.
Everyone can learn from it Everyone can learn from it
housewives, scientists. Its four A a students, engineers, hobbyists,
volumes consist of:

 DESIGN OF DIGITAL SYSTEMS $£ 12.50$ This course takes the reader to real
proficiency. Written in a similar
question and answer style to Digital proticiency. Written it a similiar
question and answer style to Digitial
Computer Logi and Electronics, this
course moves at a much faster, pace
and goos into the subiect in greater
and and goos ineso the much subect in greater
ane the
depth. Ideally suited for scientists or depth. Ideally suited for scientists or
engineers wanting to know more
about digital electronics, its six A4 about digital electronics, its six
volumes lead step by step throu
vomber systems and cumber systems and Boolean algebra
to memories, counters and arithmetic circuits and finally to an
understanding of calculator and compter desi
Book 1 Ocral,

Flow Charts and Algorithms are the essential ogical procedures used in all computer programming
and mastering them is the kev to success here as well as being a and mastering them is the key to success here as well as being a
priceless tool in all administrative areas -presenting safety regulations.
fovern government legislation, office procedures etc.
THE ALGORITHM WRITER'S GUIDE $£ 4.00$ explains how to define questions, put them
the flow chart, with numerous examples.

Microcomputers are coming - ride the wave! Learn to program.
Millions of jobs are threatened but
milions more will be created. Learn
BASIC. the language of the sill

come use whi i

 Which takes you from a coourseignorance step-by-step to rete
proficiency proficiency with a uniape style of
graded hints. In 60 straightyonward
lessons you lessons you will learn the tive
essentials of programming: problem essentials of programming: problem
definition, flowharting, coding the
program,
debugging program, Howcharting, cooding the
debugging, clear
documentation. Harder problems documentation. Harder problems are
provided with a series of hints so you
never sit glassy-eved with your mind a bla never sit glassy-eved wach as programs for
really tough tasks soon learn to tackle really tough tasks such as programs for
compound interest and computer games.
COMPUTER PROGRAMMING IN BASIC £9.00
Booki Computers and what they do well: READ, DATA, PRINT, powers, brackets, variable
names LLET: eress coding simple

 bubbe sorting. TAB.
Book 4 A Avacaed

THE BASIC HANDBOOK $£ 11.50$
This best-selling American title usefully supplements our BASIC course with an alphabetical guide to the many variations that occur in
BASIC terminology. The dozens of BASIC 'dialects in use today BASIL terminology. The dozens of BASIC 'dialects' in use today
mean programmers. often need to translate instructions so that they
can be RUN on their system. The BASIC Handbook ic can be RUN on their system. The BASIC Handbook is clear, easy to
use and should save hours of your time and computer time. A must use and should save hours of your time and
for all users of BASIC throughout the world.
A.N.S. COBOL $£ 4.40$

The indispensabie guide to the world's No. 1 business language. After documenting oil company programs and did invaluable work from the
first day. Need we say more? first day. Need we say more

GUARANTEE - No risk to you
If you are not completely satisfied your money will be refunded on return of the books in gaod condition

- Please send me:
..Digital Computer Logic \& Electronics @ $£ 7.00$ Algorithm Writer's Guide @
BASIC Handbook @ F A.N.S. Cobol @ 44.40
four wars to pay:
1, A U.K. cheaue ora
and

Name.
sata.

Introducing the latest professional state-of-the-art $31 / 2$-digit DMM - at really oldfashioned prices! From just an unbelievable $£ 39.95$ inc. VAT, plus $£ 1.15$ p\&p!

wW - 067 FOR FURTHER DETAILS

The finest amplification kits from Crimson Eletrrik $\star \star \star \star \star$ LATEST DEVELOPMENTS $\star \star \star \star$

$\star \star \star$ * BEST VALUE $\star \star \star \star$

Crimson Elektrik

Ber
WW - 018 FOR FURTHER DETAILS

$\star \star \star \star \star$ SOUND ADVICE $\star \star \star \star$. over mp hardware kis which enable our advarced moodules io be houses in Our Preamplifier can be fited with the moving coil modute alowing ito be used with the latest M. C. carridge (Which can now be bought tor as ititle as $\varepsilon 30$). Space prefludes is trom publishing all our products and prices, below are justa tem examples

 \square

\square

 \square
TWO BRAND NEW THANDAR INSTRUMENTS

thandar
SINCLAIR ELECTRONICS LTD
London Road, St. Ives, Huntingdon, Cambs. PE17 4HJ.
London Road, St. Ives, Huntingdon, Cambs. PE1
Telephone: St. Ives (0480) 64646 . Telex: 32250 Sincliai Electronics Lid. reserve the right to ater prif
WW - OO8 FOR FURTHER DETAILS

computer kit.
 The Sinclair ZX80.
 Price breakdown ZX80 and manual: £69.52 VAT: £10.43 Post and packing FREE

Britain's first complete

Please note: many kit makers quote VAT-exclusive prices.
You've seen the reviews... you've heard the excite-
ment...now make the kitt ment...now make the kit! This is the ' ZXXO ' 'ersonal Computer World' gave
it 5 stars tor 'excellent value'. Benchmark' eots say it's faster than all previous . Benchmarkonal tosts
puters. And the puters. And the response from kit enthusiasts
has been tremendous. To help you appreciate its value, the price is
shown above with and without VAT This is so shown a
you can compare the $Z \times 80$ with competitive you can compare the ZX80 with competitive
kits that don't appear with inclusive prices.
'Excellent value' indeed!
For just $£ 79.95$ (including VAT and $p \& p$) you get everything you need to build a personal computer at home.... PCB, with $1 C$ sockets fo
all ICS; case; leads for direct connection to a cassette recorder and televisision (black and White or colour): everything
Yet the $\mathrm{ZX80}$ really is a complete, powerful,
full-facility computer, matching or surpassing other personal computers at several times
the price.
The $Z \times 80$ is programmed in BASIC, and you can use it to do quite literally anything from
playing chess to managing a business. playing chess to managing a business.
The ZX8O is pleasantly straightorward to assemble, using a tine-tipesed soldering iron. immediately proves what a good job you'v
done; connect t to your TV. Inkitito an appropriate power source**....and you're
ready to go

Your ZX80 kit contains.

- Printed circuit board, with IC sockets for
- Complet

ICs-all manufactured by selectected world
Ind in

- - eading suppliers.
sensitive, wipe-clean.
- Ready-moulded case
- Ready-moulded case
- Lomestic TV and cassette recorder. (Programs can be SAVEd and LOADed
on to a portable cassette recorder) - on to a portable cassette recorder.) user manual.
Optional extras
- Mains adaptor of 600 mA at 9 VDC
nominal unregulated (availabl
- separately-see coupon
allowing up to 16 K bytes RAM. (Extra
Use a 600 mA a 9 VDC nominal unregulated mains
ddaptor. Avaiable from Sinclai if desired (see counon).

The unique and

aluable comp

Their 2 X80.
The Sinclarz XBO is not just another exceptionally low price, the ZX80 has two uniquely advanced components: the Sinclair BASIC interpreter; and the Sinclair teach-
yourself BASIC manual The unique Sinclair BASIC interpreter offers Unarkable programming advantages: ZX80 eliminates a great deal of tiriesome typing. Key words (RUN, PRINT, LLST, etc.) have their own single-key entry,
Unique syntax check. Only lines syntax are accepted into progran identifies errors inmmediately. This prevents entry of long and complicated prorgarams with
faults only discovered when you try to faults only
runthem.
Excellent
Excellent string-handling capability-takes
up to 26 string strings can und variables of any length. All strings can undergo all relational tests (e.g.
comparison). The $Z \times 80$ also has string input comparison). The ZX80 also has string inp
to request a line of text when necessary. Strings do not need to be dimensioned.

- Up to 26 single dimension arrays.
- FOR/NEXT loops nested up to 26

Variable names of any length.

- BASIC language also handles. full Boolean
- Exceptionally powerful expressit tacilitites, etall.
- Rodification of existing program lines. Randomise function, useful for games and
secret codes, as well as more serious applications.
- Timer under program control. PEEK and POKE enable entry of machi
code instructions. USR causes jump to User's machine e eanguage sub-routine.
- High-resolution graphics with 22 standard graphic symbols. All characters print
- Limes of of unlimited length.

Fewer chips, compac design volume production more power per pound!

The ZX80 owes its remarkable low price to

 is remarkable design: the whole system is packed on to fewer, newer, more powerful and advancea f.SI chips. A Aingle SUPER ROM,for instance, contains the BASC interpreter, the character set, operating system, and
monitor. And the $Z \times 80$'s 1 K byte RAM is
 toughly equivalent to 4 K bytes in a conven-
tional computer- typicaly
BASICoric. (Key word 100 ines of BASIC. (Key words occupy only a single byte.).
Te display shows 32 characters by 24 lines. And Benchmark tests show that the $\mathrm{ZX80}$
is faster than all other Anterenchmarkests show nat hne 2
is faster than all therpersonal computer.
No other personal computer offers No other personal computer offers this
unique combination of high capability and
Z80A microprocessor-new, Soctets for TV,
 med
widely recopognisest as the best
ever made

The Sinclair teach-yourself BASIC manual.
If the specifications of the Sinclair ZX80
mean little to you don't worry They're all explained in the specialll-written 128 -page book free with every kit! The book makes
learning easy exciting and enjoyab and learning easy, exciting and enjoyable, and
represents a complete course in BASIC
 programs. (Available separately-purchas
price refunded if ou buy a $Z \times 80$ later) price refunded if you buy a 2×80 Iater.)
Ahardware manual is also included with
ever
The Sinclair ZX80 Kit. $£ 79.95$ Assembled: £99.95. Complete! The ZX80 kit costs a mere £79.95. Can't
 problem! It's also availabe, ready assembled
and complete with mains adaptor, for and complete
only $£ 99.95$.
Demand for the ZX80 is very high: use the
coupon to order today for the earliest possitit coupon to order today tor the eariliest possib
delivery. All orders will be despatched in strict rotation. We'll acknowledge each order by
return, and tell you exactly when your ZX80 will he delivered. If you choose not to wait, you can cancel your order immediately, and your
money will be refunded money will be refunded at once. Again, of
course, you may return your ZX80 as received
within 14 days for a full refund. We want you to withne, 14 days sor a full refund. We want you to
be satisfied beyond all doubt - and we have
$\square \square \square \square$ 2×80

Science of Cambridge Ltd 6 Kings Parade, Cambridge, Cambs.. CB2 1 S 6Kings Parade,
Tel: 02223311488.

ZX80 softwarenow available!

See advertisements in Personal Computer World, Electronics Today International, and other journals.
New dedicated software-developed
independently of Science of Cambridgeefilects the enormous interest in the ZX80. More software available soon-from leading consult-

ORDER ${ }_{\text {To }}^{\text {To Science of Cambridge Ltd, } 6 \text { Kings Parade, Cambridge, Cambs.,.CB2 }}$ RN. ORDER Remember:
FORM pricices shown include VAT, postage and packing. No hidden extras.
Please send me:

Quantity Item

$-$

Ienclose a
Please print
Please print
Name: Mr//Mrs/Miss
Name:Mr
Address_

- - -

Dutchgate

The Hitachi range of LowCost Portable Oscilloscopes
Dutchgate offer the full range of Hitachi innovative Oscilloscopes each with a wo year warranty. These easy to operate and integrated circuitry offer increased stability, improved reliability and excellent performance. The vast experience gained by Dutchgate as specialists in servicing and maintaining test and measurement strumentation will be used to effect a fully reliable and efficient after sales service
Test Dutchgate today - by asking for
details of the Hitachi Low Cost Portable Oscilloscopes and then measure the result.

Dutchgate Ltd

Authorised deens for (d) Hitachi Denshi (UK) Ltd. TIMEBASE 94, ALFRISTON GARDENS SHOLING, SOUTHAMPTON Telephone: (0703) 431323

WW - 060 For further details

- AM MEIG

OSCILLOSCOPES
TOP PERFORMANCE,
QUALITY AND VALUE

HM 812
£1,458
Dual Trace as per HM 512 plus
Storage, Automatic Storage and Prices U.K.
List Ex. VAT

HAMEG LTD. 74-78 Collingdon St. Tel: (0582) 413174

THE MOST COMPLETE UUAL CHANNEL 50 MHz
COPE AVAILABLE Model 5650 \& 5650E
$50 \mathrm{MHz} .5 \mathrm{mV} 5 \times \mathrm{MAG} 1 \mathrm{mV} .10 \mathrm{MHz}$, Alternate Time Base Alternate Trigger- 500 KHz Chop Frequency, Auto Level (Lock) Circuit Calibrated Delay Sweep - One Touch Triggered Delay, Variable Hold Off - B ends A With CH1 Output Signal (5650E), One
Touch X-Y Operation Rectangular CRT, Internal Graticule (5650 Illuminated), Linear Focus 5650 £ 945; 5650E $£ 865$

A PORTABLE, HIGH PERFORMANCE,
RELIABLE DUAL CHANNEL $35 M H z$ SCOPE Model 5630
$35 \mathrm{MHz} .5 \mathrm{mV} 5 \times \mathrm{MAG} 1 \mathrm{mV} .10 \mathrm{MHz}$ Alternate Trigger - 500 KHz Chop Frequency Calibrated Delayed Sweep - One Touch Triggered Delay Auto Level (Lock) Circuit, Variable Hold Off - B ends A, One Touch X-Y Operation Rectangular CRT, Internal Graticule Illuminated, Linear Focus ONLY£ 795

A LOWER PRICE, HIGHER A PRFORMANCE, DUAL CHANNEL ${ }^{35} \mathrm{MHz}$ SCOPE Model 5531
$35 \mathrm{MHz} .5 \mathrm{mV} 5 \times \mathrm{MAGG} 1 \mathrm{mV} .15 \mathrm{MHz}$ Automatic Selection Alternate/Chop (200KHz) and Chop Only Mode Delayed
Sweep - One Touch Triggered Delay Variable Hold Off, One Touch X-Y Operation, Auto Focus Internal Graticule High Brightness CRT (Non- illuminated) ONLY 5500

LOW PRICE, high Value, dual CHANNEL 35 MHz SCOPES Models 5530/5530GR
$35 \mathrm{MHz} .5 \mathrm{mV} 5 \times \mathrm{MAG} 1 \mathrm{mV} .10 \mathrm{MHz}$ 530: Illuminated External Graticule 5530 GR: Internal Graticule (NonBrightness CRT Vertical Delay Line Built-in One Touch X-Y Operation ONLY £ 395

A LOWER PRICED, HIGH PERFORMANCE 2OMHZ SCOPE Model 5520
$20 \mathrm{MHz} .5 \mathrm{mV} 5 \times \mathrm{MAG} 1 \mathrm{mV} .10 \mathrm{MHz}$ One Touch X-Y Operation TV Sync.
Separator (Trigger) Single Sweep separator (Trigger) Single Swe
Function High Brightness CRT ONLY £230
Prices exclude VAT,
and are correct at time of going to press.

THERE'S EVEN MORE ‘SCOPE’ FOR YOUR MONEY FROM TELONIC BERKELEY
$\boldsymbol{\pi}$
TELONIC/BERKELEU U.K 2, Castle Hill Terrace, Maidenhead, Berkshire SL6 4JR

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings avallable for $10-14$
days delivery. Other Ranges and days delivery.
special scales can be made to order.

Full Information from:
HARRIS ELECTRONICS (London)
138 GRAYS INN ROAD, W.C. 1 Phone: $01 / 837 / 7937$
ww - 070 FOR FURTHER DETAILS

tw

SINCE 1954

PEOPLE HAVE BEEN ASKING "WHAT'S NEW?"

In the last three decades, TRW has had more than its fair share of important breakthroughs which have come to be regarded as milestones in the semiconductor industry.

THE 1950's

1954 TRW's first product-the improved glass-sealed axial-leaded diode. Still in high production.

1958 TRW invented the VARICAP ${ }^{\circledR}$ now almost a generic term for the varactor.

1959 The first high power, high frequency transistor.

1959 High reliability semiconductors. Starting with the Minuteman, TRW has been part of every space and missile programme since.

THE 1960's
1961 TRW invented TTL Integrated circuits.

1962 Pioneered high voltage, triple diffused switching transistors

1963 High reliability transistors in plastic package-accepted for military applications.

1966 The first transistor designed specifically for CATV.

1968 5W, 2GHz transistors for general use-off the shelf.

THE 1970's

1970 CATV hybrid amplifiers used in most of today's cable TV systems.

1972 High voltage, high speed monolithic Darlington transistors.

1972 Power Schottky Rectifiers in volume production

1975 Industry's first monolithic RF LBand circuit.

1976 5W, 5GHz transistors.
1978 Development of L Band radar transistors.

THE 1980's

The first of the decade's big advances -45 W microwave pulse power at S Band transistors. The highest available in the world. The start of a new important family of microwave devices.

In the 1980's TRW RF and TRW Power Semiconductors will keep you ahead with the most technologically advanced, exciting products from the most diverse and reliable range available anywhere.

If you're involved in RF (Reader reply no. 014) or Power (Reader reply no. 013) send for your copy of the new Data Books.

TRM semiconductions

MCPElectronics Ltd,
38 Rosemont Road, Alperton, Wembley, Middx
Telephone $01-9025941$ Telex: 923455.

28
WIRELESS WORLD, SEPTEMBER 1980

 the p

 cmsotio interfece is isaso provided tor storing working programs and useitut suburoutines

$$
\begin{aligned}
& \text { NEW - SOFTY CONVERSION CARD - EX-STOCK }
\end{aligned}
$$

NEW - SOFTY PRINTER CARD - EX-STOCK

MODEL 14 EPROM ERASERS

MODEL UV141 EPROM ERASER

- Fasterase times typically 20 minutes tor 2708 EPRoM

MODEL UV 140 EPROM ERASER

GP Industrial Electronics Limited
(Retail Sales), Skardon Place, North Hill, Plymouth
PL4 8HA Telephone: Plymouth (072) 28627
ww - 028 FOR FURTHER DETALLS
INTERFACE QUARTZ DEVICES LTD
29 Market Street, Crewkerne, Somerset TA18 7JU Crewkerne (0460) 74433 Telex 46283 inface g, ww-083 FOR FURTHER DETAILS

LAADEFTEST INSTRUMENIS -more performance and reifabifity than you

 品品|

A Leader instrument for every need.

 The fuld, is now available in the U.K.

 The full range of Leader Test Equip}

 The full range of Leader Test Equip} Learer Prowucts, with a lone history of high reliability, backed by a 1 --earwarranty, are engineered and built to the most rigid standards, and incorporate

OSCILLOSCOPES

LB0508A OSCILLOSCOPE

For full technical details together with price list ploase contact:

LEADER

SINCLAIR ELECTRONICS LTD
 Sinclair rlectronicis 4 td resever the ight to alter prices and
specectications on Leaderequiement without prior notice.

Expandable Random Access Memory Board

Features

* S-100 Bus Compatible * 4 MHz Operation * Board Select for Multi-user System
* Expandable Memory from 16 K to 256 K using 16 K or 64 K evices
DIP Switch selectable boundaries at any 16 K or 64 K boundary
* Page Mode Operation Allows up to 8 boards on a Bus * Operates with Z80 CPUs
* Phantom Output Disable and a manual Switch Selectable Output Disable
* Power Dissipation - 5 watts, Typical
* Wait States and Invisible Refresh Synchronized * 4-64K Banks are available with 4164's

The ExpandoRAM II provides a low cost means for expanding Random Access Memory capability for computers using the Bus structure. The board's design allows eight boards to operate from the same S-100 Bus.
Page mode operation provides the system with the capability of servicing multiple users without RAM interference The ExpandoRAM wait state and invisible refresh deliver faster 200 series boards are combined with the ExpandoRAM II, they create a microcomputer with exceptional capabilities and

OUR PRICE: $£ 129.00$ to $£ 299.50$ (64 K Kit) Built \& Tested from: $\mathbf{-} \mathbf{£ 2 7 2 . 0 0}$ to $£ 398.00$ ($64 \mathrm{~K} \mathrm{~B}-\mathrm{T}$)
All items subject to V.A.T.

For further information on this board, or any ther boards in our comprehensive range i.e.: SBC100, Versafloppy I III, VDB8024, telephone.

Unit A2 9 Longford Avenu Kilwinning Industrial Estate Kilwinning Ayrshire KA136EX Tel. 029457755 Telex 779808

WIRELESS WORLD. SEPTEMBER 1980 31

that fite of three power drills that fit snugly in the hand, so light they enable you to carry out the most intricate tasks driiling, shaping, cutting, polishing etc in the minimum of time. There are two types of drill stand, S 1 for P1 drill, S2 for all drills, plus all the necessary accessories in a remarkable range that fills every need. Fully illustrated literature is available and will be
gladly sent upon receipt of
$9^{\prime \prime} \times 44^{\prime \prime}$ stamped addressed $9^{\prime \prime} \times 4^{\prime \prime}$ stamped addressed envelope.
Access
Access
welcome
Barclaycard

Sole UK Distributors PRECISION PETITE LTD 19a HIGH ST. TEDDINGTON, MDX. Tel: 01-977 0878 ww - 017 FOR FURTHER DETAILS

- 150 an
all inoependentiy selectable LAB SPEC. - BENCH PRICE!
OMB Electronics, RIVERSID, EyNSFFRD, , KENT DA4 OAE
Tel. Farningham (0322) 863567
Prices, which are CWO and ex-VAT, are correct at the time of going
to press and are subject to change without notice
wh - 019 FOR FURTHER DETAILS

WW - - 029 FOR FURTHER DETAILS
and 400^{00} Thefastest
PPM-easily!

ENGLAND: Futref Fidm Developments 36 -38 Lexington Street LONDON WIR 3HR

 WW - 077 FOR FURTHER DETAILS

Eraser International Ltd.
Unit M, Portway Industrial Estate, Andover, Hants SP 10 3LU. Tel: Andover (0264) 51347/8 Telex: 477291

"I NEVER KNEW COLOUR VIDEO COULD COST SO LITTLE"

Don't be put off by what you may have heard - or imagined - about the cost of colour video.

Talk to Bell \& Howell or one of our Video Centres and get the current facts.
The fact,for example, that a portable JVC colour camera costs little more than an ordinary black-and-white camera And the further fact that by adding a JVC VHS you have a complete colour recording system for as little as $£ 1,300$ plus VAT. For playback, a standard TV receiver is

At these prices every user can benefit from colour. Training will be easier to understand; publicity more compelling; management communications more interesting; rôle-playing more effective. After all, we live in a coloured world.

PUSH-BUTTON FEATURES

Don't think for one minute that the low price has bee achieved at the expense of useful features. Among other things the camera has an iris control which automatically adjusts lens aperture to match lighting conditions; a 6:1 power or manual zoom, giving close-ups as close as 50 mm TL indicators which automatically show exposure level, auto-white balance, operating mode and power level.

BETTER STILL

Or if you feel inclined to make even fuller use of the Or, if you fee inclined to make even $3 / 4$-inch U-format camera's capabilities, couple it to a Jve 4 inch -ormat recorder.
The picture will be improved. You'll have another
sound track to use for foreign-language commentaries or question-and-answer training routines
On $3 / 4$-inch, moreover, you'll be in the right format to edit and duplicate - or add in library material. And still

the cost of the system needn't exceed $£ 2,700$ plus VAT. Alternatively, at very attractive rates, it can be leased.

SEE FIRST, THEN DECIDE
You can of course, spend more. At any Bell \& Howell Video Centre you'll see more expensive cameras, video recorders and electronic editing equipment that wouldn' be out of place in a national network.
But do you need them?
Let the Video Centre, or Bell \& Howell, help you decide Whatever your decision, two things are certain
One, colour video now costs a lot less than it used to (as well as being highly dependable and very easy to use) Two, every unit in the system you choose qualifies for the Supershield warranty, unique to Bell \& Howell. Under Supershield, all adjustments, repairs and replacements (except for tubes and tapes) are free for two years after purchase. And if a job can't be done on the spot we also provide free transport anywhere in mainland Great Britain to and from a fully equipped Supershield video workshop
Convert to (or start with) colour. With JVC video
equipment. And the Bell \& Howell Supershield guarantee.

Let Bell \& Howell show you the answer:

-T Peter Glas, Bell \& Howell A-V Ltd. Freepost, Wembley, Middlesex HAO 1BR.
Please send me more information about video equipment and a list of your Video Centres. Please
Name
Name
Organisation
Address
ww6/9
JVC CAMERAS. JVC RECORDERS.JVC STUDIO EQUIPMENT. JVC MONTORS. ELECTROHOME MONTORS. FUIIVIDEO TAPES.
ww - 016 FOR FURTHER DETAILS

We'll help you see infra-red and put you on target as well.

As manufacturers of the widest range of broadband infra-red detectors in Europe we offer designers an extensive range of devices to suit virtually all their project requirements.

So, whether you're involved in infra-red detection for industrial, military or research applications in any of these fields, things are looking better for you:

- Gas analysis
- Laser detection and measurement
- Intruder and fire alarms
- Radiometry and spectroscopy

Plessey infra-red detectors feature a range of element materials: ceramic, lithium tantalate, triglycine sulphate; a choice of windows and filters for selecting spectral response and a choice
of electronics to give the required signal response.

And, if your need is for fast photovoltaic detectors for CO_{2} laser range-finding applications, we can also offer lead tin telluride in the 10-11 micron region. High $\mathrm{D}^{*}\left(4 \times 10^{10} \mathrm{cmHz}^{1} \mathrm{~W}^{-1} \lambda \mathrm{p}, 800,1\right)$ bandwith to 10 MHz and beyond.

Whatever your requirements, ask for our latest catalogue to put you on target.

4) PLESSEY

Plessey Optoelectronics and Microwave Limited
Wood Burcote Way Towcester, Northants, United Kingdom NN127JN Telephone: (0327) 51871 Telex: 31442 Plessey Optoelectronics and Microwave Limited 16s1 Kaiser Avenue, Irving, California 92714, USA.
Telephone: (714) 5409934 TWX: 910 595 1930 Telephone: (714) 5
 this country in 1979 were VHS models. VHS was also the most successful home video system worldwide.

That represents a pretty overwhelming vote of confidence. How did we manage it?

At the outset we were determined to produce a home video system that was nothing short of outstanding. That's why VHS offers standards of reproduction reliability and compatibility that are quite simply second to none.

And of course, if you build a better system in the first place there's less need to change it later on.

So while we have continually improved the quality of our recorders there are now triple standard VHS machines which accept PAL; SECAM and NTSC - we have never changed the design of the VHS cassette. And it will not change in the future either. Which is more than can be said for some of our competitors.

By maintaining the same cassette, VHS has become the most compatible system available. So your customers will find
it much easier to swap tapes with friends and enjoy the greatest range of pre-recorded material too

VHS is the No. 1 system in the
UK, Europe, the US and Japan.
Make sure you've got it.
Right?
Advertisement produced co-operatively by: Akai, Fergusor Hitachi, JVC, Panasonic,Sharp.

Theworld's No. 1 system.

fact:
 the SM63 looks
 (and sounds) great in front of people... and cameras!

SM63 midirectional
$\begin{gathered}\text { Micromamic } \\ \text { (actuph size) }\end{gathered}$
(gize)

Take it from the professionals A top quality Shure microphone makes a measurable difference in upgrading sound. Now, Shure has of your act, as well as this sound. The SM63 is a top-quality omnidirectional microphone with high output and clear. crisp sound
uality - an innovative blending of smaller size, handsome appearance,

isolation shock mount for minimimized handling noise. The new SM63 also features the Shure-developeper
Send for complete literatur
erature on all Shure profenssionalal micicononomes - inclucucining the
new SM63. (Please let us know your microphone apolication).

```
SPECIFICATIONS
Freauency Response: 50 to \(20,000 \mathrm{~Hz}\)
Polar Pattern: Omnidirectional
Impedance: 150 ohms
Output Level (at \(1,000 \mathrm{~Hz}\) ): Open Circuit Voltage (Odb \(=1\) volt per microbar) -76.0 db
\((0.16 \mathrm{mV}\) Power Level (Odb \(=1\) milliwatt per 10 microbars) \(-565 \mathrm{dib}\) Hum Pickup (ypical at ( 60 Hzz ): 13 db equivalent SPL in 1 millioersted field
Hel
Shock Mount: Patented internal vibration isolator
```


professional microphones...by『 ${ }^{\circ}$ SHURE ${ }^{\circ}$
Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU - Telephone: Maidstone (0622) 5988

Editor:
TOM IVALL, M.I.E. Doputy Editor:
PHILIP DARRINGTON PHLLIP DARRINGTON
Phone $01-2618435$

Technical Editor:
GEOFF SHORTER, B.S GEOFF SHORTER, B.S
Phone 01-261 8443

Projects Editor MIKE SAGIN
Phone: $01-2618429$

Communications Edit
TED PARRATT, B.A.
TED PARRATT, B.A.
Phone $01-2618620$
Drawing Office Man
ROGER GOODMAN
Technical Illustrator
BETTY PALMER
Production \& Design

Advartisement Controlle
Advertisement Manager
Advertisemment Mal
BOB NiBBS A.C.1.1.
Phone 01-261 862
DAVID DISLEY
Phone 01-261 8037

Classified Manage

Phone 01-261 8508 or 01-261 8423
MIKE THRAVES
Classified Advertisemen
Phone 01-261 8508
JOHN GIBBON (Make-up and copy)
Phone 01-261 8353
Publishing Director:
GORDON HENDERSON

He who hesitates . .

government is a fine thing. Matters of consequence to the community canno e left to the whims of dictators, unles they happen to be of an unusually benevolent disposition. The impositio health care, transport - all must be discussed and arranged in a properly democratic manner. But, when the decision which must be taken when the talking stops, one can sometimes begin to wish for a benevolent despot, or at least a well-heeled entrepreneur In America, Japan and one or tw millions of pounds worth of investment have been used to build vigorous research, development and production programmes in integrated-circuit technology. In the UK, Sir Keith million for Inmos. He would clearly have preferred the company to raise the money from private sources, but only discerned "flickers of interest" from private enterprise. That the the City in a particularly adventurous light - it evidently likes to apply its risk capital in an area of slightly less risk - but the decision has to be accepted to the tune of $£ 50$ million was made, the company has lived up to its promises and is on schedule with its US operation: nothing has changed. Although the original decision was seems to be no reason why the Tory incumbents should wish to throw away the first $£ 25$ million by holding back the second. Inmos have said that they have already lost $£ 36$ million in the tim instalment. If it had not been forthcoming, Inmos would almost certainly have survived, but as an American company, possibly raising money from US sources.
Inmos has been raised. It is somewhat Iate in the game, after all, to start competing with the established giants
particularly as the said giants are pretty well entrenched in Britain already. One American view is that . Europe has no need of a semiconducto manufacturing capability; the pot leave the supply of raw materials chips - to others? One hesitates to appear churlish in the face of such altruism, but the Americans ought no o be asked to shoulder the whole semiconductor making.
They do have a very good point, of course. Software and applications development do not run away with th manufacture and marketing can in the early stages. The UK is already rather good at software (less so at industrial application) so perhaps we shou "oncentrate on this side of the
If there were a choice, that would possibly be a sensible one. But is there a choice? Is it really in our best nterests to leave to foreign \mathbf{c} the conception, design and constantly being told will be central to our future economy? Will we then be supplied with the devices we want or hose we are told to want? Will we supplied at all? Having already see
control of many of our established industries pass from our hands in an involuntary way, it hardly seems reasonable to forego a chance of holding on to one of such significance. It may be that the pathetically sma possible, unless private enterprise becomes more enterprising, is far too little and about fifteen years too late, but however small a UK
microelectronics industry finds itself nucleus of capability strong enough to supply special needs and, more important, to attract the necessary brain power, must be kept. This is
decision which carries extremely long-term consequences: future options should not be limited by

The floating bridge

New design principle for audio amplifiers
by R. M. Brady

This article describes a design

principle which has the advantages of the bridge amplifier but none of its
disadvantages. A siter disadvantages. A simple amplifier
which drives four ohm,
15 -watt speakers using power from a 12 -volt car battery is described in part 2 and test results are included. The design is further applied to a 200-watt version suitable for group use.

Bridge amplifiers offer many potential advantages over single push-pull
amplifiers: high power, high voltage swing for moderately low-voltage components, lower power dissipation in each transistor, and the capability of operating with high impedance loads, thereby reducing transmission losses They are almost essential if power sup ply voltage is limited as, for example, with a car battery. Present designs, however, are necessarily of complex them expensive and not so reliable They also have limited bandwidth and poor distortion performance, because of the close coupling between individual halves of the amplifier.
One half controls the instantaneous
potential of one output terminal with respect to earth, and the other does the same job on the other terminal. The new system uses one amplifier to control the difference between output terminal amplifier to control a quantity which could loosely be called the sum of these "soltages. This amplifier acts merely as a "slave" to the first one, enabling a full vay directly affecting the not in any put. The second amplifier is capacitively by-passed at high frequencies, where a full voltage swing is not so important in audio work. This bypassing prevents
the instability for which the instabilifiers are renow which bridge The simplest version
requires that the earth (i.e. chassis, screening and mains earth) be floating, changing potential with respect to the
power supply. Although this is unusual it is perfectly safe and acceptable provided steps are taken to prevent stray
mains currents from passing through the system.
It turns out that the design of both component amplifiers may be consider ably reduced in complexity by using this tion, may be added easily and far more simply to the floating bridge than to conventional amplifiers
The new system has the following dvantages over conventional bridg
wider bandwidth and lower distor-

- optimized voltage swing, because
both amplifiers must bottom before the output is affected
- saving in cost and complexity
- one output terminal may be earthed - possibility of using two floating bridges
amplifier
The next section presents the system in block diagram form, contrasting it with a conventional bridge amplifie configuration, and then sub-dividing the circuits for tracing through the
feedback loops of the whole system prior to reading the later paragraphs. The circuits are rather unconventional,

Fig. 1. In version $A_{x} A$, is a high quality amplifier which controls the difference between output terminal voltages, $x-y$, while A_{2} is a cheaper amplifier which controls the sum $x+y$ so that full voltage swing can occur. Note the
unusual position of the earth. (x and y are potentials with respect to point

Fig. 2. Version B of the floating briage amplifier is similar to version A, bu has a different input configuration

WIRELESS WORLD SEPTEMBER 1980

 and if you do, you may find it good advice to forget temporarily the elec-tronics you have already learnt, and to investigate the circuits from first principles.

Block diagram analysis wo alternative but similar arrangeshown in Figs 1 \& 2. Amplifiers are inverting and non-inverting and A_{1} is insensitive to the state of the power upply. Output terminals are labelled x and y as shown, being instantaneous
potentials with respect to point A, and in both cases the feedback loops are arranged so that at low frequencies A_{1} controls the value of $x-y$, and A_{2} controls the value of $x R_{4}+y R_{3} \approx x+y$. Capacitor C_{2} by-passes A_{2} at high
frequencies, where large voltage swings are unnecessary. Circuit A, Fig. 1, inverts the signal whereas circuit B, Fig. 2, does not.
First consider a simple-minded amplifier, Fig. 3 . Feedback loops are arranged so that if V is the instantaneous input voltage then $x=G V$ and $y=-G V$, and the output across the load coupling between individual amplifiers, magine that x rises for some reason because of effects in A_{1}. This causes A_{2} to turn on, to keep y constant. The fact hat A_{2} has turned on affects the value of x, causing A_{1} to react each time there
is a small phase shift, which can easily be amplified by this mechanism and cause unwanted oscillation. Hideous things can happen at the cross-over point where both ampline new systemalmost completely eliminates this coupling effect.
Effect of A_{1} in circuit A Fig. 4 shöws A_{1} and its associated feedback loop. For the present A_{2} can be regarded as a sink by A_{1}. In the quiescent state, A_{1} stabilizes $\mathrm{x}-\mathrm{y}$ to its own (ideally zero) offset voltage. Imagine that the potential y rises with respect to x for some the amplifier remains at almost earth potential x, so that there is a voltage across R_{2} which tends to make a current pass into the + input. This causes A_{1} to current pass from x to y through a oad impedance* thereby reducing the value of $y-x$ and stabilizing the system. Amplifier A_{1} is acting as a virtual earth amplifier, and its voltage gain is R_{2} / R_{1}. Because A_{1} is insensitive to supply voltages, then any change in potential y
with respect to the power supply will not be noticed by A_{1} (apart from stray capacitance effects**). As the potential "Remember Kirchooffs Lawi if current is supposed
to o disappear down the earth hine, where is the
circuit supposed to be be completed? "There is also a low frequency coupling, discussed

Fig. 3. In the conventional bridge amplifier A, and A_{2} are identical
good quality amplifiers arranged so that output x is proportional to the input good quality amplifiers arranged so hat output x is proportional to the input to occur for a given power supply, but is expensive and prone to instability.

Fig. 4. A, amplifier of version A. Ignoring the earth connection, imagine
voltage y rises; feedback is arranged so that this causes a current to flow x causing x to rise, and so restoring the correct cutput x - r fie negative x, causing) x to rise, and so restoring the correct output $x-y$ (i.e. negative
feedback). As there is only one earth connection it cannot short out any currents! Amplifier gain is R_{2} / R_{r}.

Fig. 5. A, amplifier of version B, similar to that of version A, but with slightly

Fig. 6. Chean amplifier A_{2} controls the sum $x+y$. Normally, this must control the current so that $y=-2$, which would be the case if $R_{3}=R_{4}$. At high frequencies full voltage swing is not so important and C_{2} gives feedback so
that y remains constant; this greatly simplifies design.

Fig. 8. Simple power supply arrangement in which C is stray between earth
and the power supply, C is the transformer capacitance between the mains and secondary; if an earthed screen is not included then mains currents could
pass, destroying the amplifiers. A conventional power supply can be used if a pass, destroying the amplifiers. A convention
change-of-origin preamplifier is included.

Fig. 9. Change-of-origin preamplifier. Earth is connected to the power supply
negative rail, so many floating bridges can be operated on the same power negative rail, so many floating bridges can be operated on the same power
supply. Preamplifier converts the signal into current 1 , which passes through
R from an a.c. point of view .
y with respect to the power suppiy is the only thing which is affected by A_{2}, then A_{1} is decoupled from A_{2}. This confers a high degree of stability on the circuit, and enables A_{2} to be of cheap design, with poor distortion performance, in
what will remain a high fidelity system. Effect of A in circuit B. Fig. 5 shows A_{1} and its associated feedback loop. Resistor R_{5} is large-valued, providing bias, so that d.c. conditions are identical
with those for circuit A. Imagine that with those for circuit A. Imagine that
the input voltage rises. This causes A, to conduct in such a direction as to cause to rise with respect to x. Negative feed back is applied through R_{2}, causing the equals that of the - input, and the circuit stabilizes. This happens whe the value of $y-x$ is R_{2} / R_{1} times the input voltage. A_{1} is again decoupled from A^{2} Effect of A_{2}. Fig. 6 shows A_{2} and its feedback loop; C_{2} by-passes A_{2} at set nearly equal to R_{3} so that at low frequencies A_{2} controls the potential of in such a way that $x+y$ is alway corresponds to the volta point A. Thi perienced in conventional bridg amplifiers, and has the advantage tha the power dissipation is shared equall between component amplifiers. In larger than R_{3} so that at low frequen cies, A_{2} bottoms shortly before A_{1} doe o. This enables a full voltage swing to occur, and is illustrated in Fig. 7. The system can .cope with a poor quality put being appreciably savings can be quite large in this area
Earthing arrangements. Fig. 8 show typical power supply arrangement Capacitors C_{r} are reservoirs, C_{e} the stray capacitance between earth and the bulky components of the power etween primary and secondary of the transformer.
An apparent problem as regard bandwidth is the effect of capacitance C_{e} between earth and the floating power supply. Much of this will be is hard to eliminate A typical, and so a design which is not particularly fussy about reducing this capacitance, is round 500 to 1000 pF . This capacitance is effectively put across the output, the feedback loop of $A_{\text {a }}$ and is thus in parallel with a load of typical impedance 8 ohms. It thus only becomes significan at frequencies above about 20 MHz and o can be ignored.
The effect of C_{t} is potentially more pass from live, through can potentially ifier to the power rails, through the transistors of A_{1} and A_{2}, and to earth The high mains voltages involved are capable of destroying the semiconducseen that, whilst the system is working

WIRELESS WORLD, SEPTEMBER 198

Fig. 10.

Sridge-bridge amplifier for the
real power maniac! $B R$, and $B R$ are both floating bridge amplifiers, and each have their
own power supply They own power supply. They are
connected together similarly to a conventional l oridge amplifier. (so care with instabilitites.!. Available
voltage swing is four times the voltage swing is four times the
voltage of each part of the power supply.
correctly these currents are safel passed. The feedback loop of A_{2} cause he potential y to fors that of the (i.e. earth). Such a rise in y causes A conduct so as to safely pass any such mains currents. But this does not apply switch-on, or on failure of som omponent. It is hus higly desirable t nsert an earthed screen, betwee former.
A further safeguard, which is necessary for highly inductive loads anyway, is to insert reverse-biased This prevents the em f on the collector of any transistor in A_{1} from exceeding the power supply e.m.f. and also pre vents any transistors from being screen is included, and any inductive loads are by-passed by the usual C-R network, then this is unnecessary.

Further application

Change of origin devic
his section describes how the amplifie ment avoiding the unusual arrang arrangement of Fig. 8, and also de scribes a bridge-to-bridge circuit. It is included here because it follows on naturally from the block-diagram has so far received. If you wish to se how the block-diagram amplifie actually looks in real circuits and actua omponents you may prefer to jump part 2 and come back to this sectio The
earthing devices so far described are fine, provided only one amplifier is used with each power supply. Any from the same supply would result in each A_{1} shorting out the other A_{1}. Fig. 9 shows circuit A with a modification so that many such amplifiers can be operated using one power supply. The input is with respect to the - rail: A circuit B type floating bridges. dis bridge
feedback, so that in the quiescent state
voltage of Tr_{102}. From an a.c. point of iew, they act as a virtual eart . equal to ($\left(R_{\text {104 }} / R_{105)}\right) \times V_{\text {in }} / R_{1}$, where $V_{\text {in }}$ is the input voltage.
Because of the effect of $\mathrm{C}_{102}, \mathrm{C}_{103}, \mathrm{R}_{101}$ through $\mathrm{R}_{\text {, }}$ and any a.c. variations in are caused by A to pass through R so that the output e.m.f. is $\left(R_{1} / R_{100}\right)$) V \% $\left.R_{1}\right) R_{2}$. Thus the gain is $R_{109} R_{2} / R_{105} R_{1}$
. There is no possibility of coupling between the pre-amplifier and bridge mpifiner stages, provided has ortion is far away from, or screened from, the rest of the control circuitry, and pro ollector and base of Tr_{1} is small. Even with a large capacitance here (say a maximum of 100 pF), then a small capacitor between collector and base of damping out any interaction. This pre caution is probably unnecessary: for example, if ZTX304 is used for Tr_{101}, then a working voltage of 70 V can be used, but there is a capacitance of only GpF between collector and base. necessary in actual circuits becaus there is a semi-stabilized voltage point already in the circuit for A_{1} which may be used (point C in Fig. 14, part 2). In be replaced by some frequencydependent circuit: for example, a tonecontrol or a high or low-pass filter. Fig. 10 shows the circuit of a bridgebridge amplifier. Amplifiers BR_{1} and
BR_{2} represent complete bridge amplifier circuits, with inputs + and - and point A , and outputs $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$ and points A_{1} and $\mathrm{A}_{2} \cdot \mathrm{x}$ is connected internally, in both feedback loops to the "earth" input, but conity Using many bridge-bringe of origin" device, operated from two supplies, but note that each such two-bridge must carry aneous output voltage $x-y$ from one amplifier and B is the output of a second such bridge amplifier connected to the same supplies, then a bottomed state
will be reached when the total available upply voltage becomes equal to th largest of A, B and $A-B$. In the cas then the third condition is never fied, and each amplifier can work inde pendently
If low-level signals are used which require sharp peaks, then this system could be used for carrying a number o signal will be clipped, and the low-leve signal will not be clipped (if working into a similar load).
The use of change of origin with a two-bridge is likely to be restricted group P.A. where many amplifiers are required to carry the same signal. Practical circuits will be given in a
second part of this article.

Micro '8

A call for papers has been issued for t Microsystems 81 conference, being he at the Wembley Conference Centre London from March 11-13, 1981. Th ngineers and those involved in de igning and implementing micros ems of all types. Scope includes cas tudies, communications, design aid列 project management, real time langu ages, signal processing, software deve opment, standards and testing. Th hird day is devoted to personal com puters and small business systems and ducation. Synopises of papers for con sideration should be sent by Septembe 2, 1980 to Robert Parry, Microsystem 81, PO Box 63, Westbury House, Bury Mis Guilaford, Surrey GU2 5Bh. Business Press and sponsored by Com uter Weekly, Microprocessors and Microsystems, Practical Computing and ystems International

Electronic cryptography
Codes, ciphers, communications and computers

Lively controversy in the USA about new NBS data encryption standard poses the question: might data security be better served by going to one of the proposed "public ke imports? The debate has a transmission in the UK, as well as in the USA. information as a rovides background that ever clever coding systems may not be

The marriage of communication technology and computers has proved a any profoun nology off information collection, colla tion, processing and distribution, affec ting government, commerce, industry living under the shadow of his elec tronic dossier. But increasingly import ant in this cosy family relationship are those out-of-wedlock twins: crypto graphy and cryptanalysis. This simile is electronic computer, Colossus, was created by Turing and Flowers for that wartime temple of the black art at Bletchley Park.
in affie and Hellman have pointed out the subject that "Until recently crypto graphy has been of interest primarily to he military and diplomatic commun mercial organisations have raren comsidered it necessary to resort to encryp tion for protection of their communication, and those that have, have seldom done so with particular care." The books were developed primarily to reduce the number of words tha needed to be transmitted; used in isola tion they did nothing to ensure privacy But the whole concept of electronic linked with multiple visual display units, the implications of digitalized packet-switching telecommunication networks and the general growth o information technology together pose
an increasingly significant threat to the privacy of the individual and to com mercial confidentiality.
Electronic storage and transmission
of information has opened the way to new forms of traditional crimes - data theft, industrial espionage, sabotage raud by deception - and to potentia invasion of privacy of the individual
The act of communicating so much information between different locations not only vastly increases the extent and variety of information available to a determined eavesdropper but the same dropping easier and relatively les costly.
It is not solely a question of dataprocessing technology. The use of microwave radio relays rather than cable, combined with direct long
distance dialling, allows the intercep tion of public and defence telecom munication traffic without the need for physical tapping of wires and without the eavesdropper being in proximity to to program a computer to select from a flood of messages only those containing key words or specific addresses or sible far more selective eavesdres pos Communication technology admit tedly, discourages the casual listener by multiplexing large numbers of circuits on a single bearer or by the use of high techniques, and by confining burst signals to narrower, sharper beams and increasingly higher frequencies. But none of these techniques can be ex pected to defeat the determined eaves dropper. Techniques of steganography
which seek to conceal the very existence of communication, such as pseudo-noise or frequency-hopping transmission or information concealed on sub-carriers within conventional elude for long the attention of listeners equipped with spectrum analysers and the like.
While this article doesn't intend to probe the sensitive area of officia some idea of the scope of signals intelligence (SIGINT) can be gained from the simple statistic that 40,000 of the Collins R 390 family of general purpose h.f. communication receivers but a considerable proportion, are likely to have been used for American sur veillance work.

The capture by the North Koreans of merican cryptographic equipment on he USS Pueblo is said to have made possible the decoding of an enormous store of messages intercepted in pre attempted counter-coup of the Hughes deep-sea recovery vessel Glomar Exporer and its vastly expensive efforts to raise the sunken Russian submarine of Hawaii. The Russian "bombardment" of microwaves appears to have been an attempt to prevent the Americans in ercepting microwave trunk systems, in the manner alleged to have been carried and at consulates in other parts of the USA, almost certainly aided by com puter selection of circuits of particular iterest.
Modern data transmission, copmmer cial as well as official, is thus facing a ne be provided only by cryptography Messages need to be enciphered in a code that cannot be economically rea by an eavesdropper and that convey ryptographic system that is less secur han the users believe represents a ma or risk. A code thought to be secure nvariably tempts users to transmit in ormation that, were such a code not radio or cable. During World War II the Germans fastened a small plaque on their military radios "Feind hoert mit!" (the enemy listens also) but were so convinced of the security of their Enthat they were prepared to com municate not only tactical information, whose importance would rapidly evaporate, but also strategic and logis even when it took days or weeks to recover the plain text. This does not mean that all codes need to be absolutely secure, provided that they delay sufficiently the recovery of the plain
text or involve the codebreakers in an unduly large and unjustifiable operation.
The techniquies of cryptography have progressed from hand codes to machine but the changes in technology have not invalidated the classic principles of the craft.

WIRELESS WORLD. SEPTEMBER 1980

Basics of cryptography uired a specialized terminology that set it apart from communication en gineering with its more familiar signal coding, pulse code modulation and erro detection and correction codes. For the ciphers read Kahn's The Codebreakers (the original hardback edition contains more technical material than the later paperback). Here only a tronic cryptography are discussed more details are in the tutorial paper by Diffie and Hellman
The term cryptography covers both codes and ciphers; in essence a code pre-arranged code blocks, for example five-letter or five-figure groups, with each group representing a word or phrase of the original message, known as the plain text. The coded message number of letters or words in the plain text but unless further manipulated any given code group always represents the same phrase. Radio operators, for national Q -code which overcomes language difficulties and reduces trans mission time but is not intended to provide privacy. An ordinary telephone directory is a unique STD number.-(However, it would be virtually impossible to decode the number without making an exhausting search through a directory arrames.) Codes based on words and phrases are less readily automated than ciphers, though codes may be used within a cipher where personal privacy is needed.
Ciphering is the process of changing the plain text letter by letter so that the original text but with either the position of the letters changed (transposition cipher) or new letters substituted (subcarried out more than once or a com bination of both processes may be used. A simple substitution cipher could consist of simply moving each letter in the plain text a few places along the a B, etc). This, however, would be extremely vulnerable to cryptanalysis the art of breaking enciphered messages - by somebody not in possession of the cipher; language structure renders a than a child's puzzle. Simple transposition ciphers are similarly vulnerable. To make substitution ciphers more secure, it is common practice to use cipher successive letters of the plain text (polyalphabetic ciphers). For example an A might be changed to B in one position in the plain text but could modern ciphers are based on poly
alphabetic substitutions (or the equi valent in digital terms). The degree of security depends on the use of many
substitution alphabets to avoid regular substitution alphabets to avoid regular repetition of the use of any one of them, While the use of polyalphabetic ciphers greatly increases security, it brings
about a need for the users to have some form of key or running key that is not available to the eavesdropper.
It is a feature of any complex cipher memoire or hey to form of aide message, just as a code book or the form of memory is needed for codes This may take many forms: book ciphers may use words or letters taken in some way from the pages of a readily
available book: proverbs or poems may available book; proverbs or poems may
be committed to memory; special key blocks to provide running keys may be printed in a miniature book or pad; in electronic systems a key generator providing a specific stream of 0 or 1 can be Historically a further for writing has been important: concealed codes or ciphers, more correctly termed steganography where the users endeavour to conceal the existence of the invisible inks, pin pricks (punctured codes), letter codes with short messages concealed in a long letter, and microdots to radio transmission techniques such as pseudo-noise forms of spread spectrum.
are two splex ciphering system there itially, be urets that will, at least inper: the general form the eavesdropper: the general form of the substitu-
tions and transpositions (the and the key, Fig 1 To recover the plain text, both need to be known and it may not be necessary for the users to keep both secrets from the eavesdropper. In electronic systems for commercial use, it may even be advantageous to esta-
blish and publish an agreed algorithm the security of the cryptosystem then depending upon the key. It will then be

Fig. 1. Simplified outline of conventionally encrypted communication used for encoding and decoding with same form of algorithm
ssential that the key should not be come available to the eavesdropper and it is necessary to enforce strict rules of
key management and key distribution.

One-time systems
To be secure a polyalphabetic cipher eeds to use a large number of differen substitute-alphabets so that each is substitute-alphabet should be used only randomly: the users need to be in structed by means of a running key
which substitute-alphabet to use for which substitute-alphabet to use for each letter of the plain text, and these
instructions should, if possible, be given in a truly random sequence; in other words the sequence indicated by the key should never reoccur. In practice this can be done by means of a "one time pad" or "one-time tape" conor binary digits. Such a key may indicate to the user by how much each letter should be shifted along the alphabet; a form of addition (but unlike arithmetical add forward): see Fig. 2 .
ditionally secure and will defy all forms of cryptanalysis.

Cipher machines

For centuries, most encryption was done painstakingly by hand, aided
sometimes by simple abacus-type machines and the liberal use of squared paper. Polyalphabeticity, first proposed in 1466 by the Italian architect Leo Battista Alberti, at the request of the
Pope's secretary, gradually established Pope's secretary, gradually established grade encryption and was the basis for the first successful coding machines and later for on-line machines. A series of early rotor machines were devised from about 1916 by Hebern, Koch, Damm and machine but using six wheels and a drum or cage to generate the key was developed by Hagelin in 1934.
Most machines had a number of interchangeable rotors, electrically between input and output contacts as to form a whole series of polyalphabetic substitution ciphers. With say six rotors, there can be some 26^{6} letters before

the cipher alphabet sequence repeats, although the authorized users (with identical machines and rotors) only had
to know which permutation of rotors to to know which permutation of rotors to some further permutations made possible, for example, by a manually adjustable jackfield.
Those who devised rotor machines
had every reason to believe that they would be secure against all then-known methods of practical cryptanalysis; the combined efforts of codebreakers in Poland, France and at Bletchley Park, and the work of Friedman in the United
States, showed this not to be the case. The Enigma-type machines of the Germans and Japanese (more complex forms of a machine developed and patented for commercial use) provided subsequent distribution as Ultra, Purple, etc. Methods of successfully attacking even single short messages in Hagelin cipher text with known plain test, or longer messages without this there is no evidence that all rotor-type machine ciphers have been broken, even with computer assistance, as it is possible to add to their complexity in
many ways, for example by increasing many ways, for example by increasing

Digital coding

In one sense all cipher text intended for telegraphic transmission involves the use of digital codes. Morse code, for non-return-to-zero digital code. However modern practice is to convert the plain text into digital form particularly for on-line systems and only then make it secret by combining the resultant bit,
stream with a running key, also in digital form, Fig. 3. If the running-key is
used only once (one-time) the resulting cryptosystem can be considered unconditionally secure. On the other hand, if, for example, a imple to preudo-randor is used to provide a shiftregister sequence, which need not recur, then it is essential to use nonlinear logic. If linear logic is used, Diffie and Hellisan can be broken in a few seconds on a minicomputer. It was this vulnerability that led IBM to investigate non-linear block ciphers in which the plain text is divided into separate
blocks, with each block operated on independently. Such a cryptosystem using simple substitution requires an extremely large number of key bits. The IBM approach has therefore been to use relatively few key bits but to subject
each block of text to a very complex series of transformations including both transpositions of order and substitutions based on the derived keys. The aim has been to produce a computationally secure cryptosystem comtosystems each of which employs the same algorithm yet which can be deciphered only by someone who can generate the correct, though relatively short, unique key sequence. From a manufacsignificant advantages if a high proportion of all commercial/industrial data security systems can be made using just one standard encryption algorithm. The user also gains because systems become
compatible. In 1977, what might at first sight seem an absurdity was published in the USA: a "standard" for a secret encryption system. But, of course, only the algorithm is public property: the generate the key stream for the authorized users is still kept secret,

Fig. 2. Simplified form of polyalphabetic substitution enciphering in which the position of each letter of the original text (plain text) is shifted along the alphabet by an amount determined by the corresponding letter of the key. For example $N+B=P$. A cipher text letter may thus represent any letter of plain text except itself.
random and of unlimited length the cipher cannot be broken.

Fig. 3. Simplified form of digital polyalphabetic cipher. Random running key acts individually on each bit of the digitized plain text to produce an unconditionally secure cryptosystem.

AID CODE

$$
\begin{array}{ccccc}
\begin{array}{cccc}
\text { A } & \text { B } & \text { C } & \text { D } \\
00001 & 00010 & 00011 & 00100 \\
\hline
\end{array} & \text { ET }
\end{array}
$$

PLAINTEXT DIGITIZED

$\begin{array}{llllllllll}\text { DIGITIZED } & 10100 & 01000 & 00101 & 10001 & 10100 & 01001 & 00011 & 01011 & 00010 \\ \text { PLINEXT } & 1010\end{array}$ | RUNNING KEY | 0110 | 11001 | 00110 | 10101 | 11101 | 010010 | 00011 | 00010 | 011110 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

WIRELESS WORLD, SEPTEMBER 1980 involving great care in key management and key distribution. The basic key generator may be in the form of a Digital systems
important advantage: their use is not important advantage: their use is not
confined to text but, provided that the system is fast enough, it can be applied to real-time digitized speech, thus proscrambling or privacy systems much more secure than with the traditional forms of analogue scrambling.
Digital encryption can be applied also to computer installations even where no
data transmission links are involved to prevent unauthorized users from withdrawing information or to prevent software piracy.

Cryptanalysis

The moment anything is committed to paper or fed into an electronic store as plain text or as encrypted messages, it
becomes vulnerable to an eavesdropper, becomes vulnerable to an eavesdropper,
whether by interception, data theft or physical access. If the encrypted material cannot be read by the eavesdropper with the help of cryptanalysis then it can be deemed secure. Never-
theless a determined eavesdropper in such circumstances will seek to acquire examples of known plain text, for example from message files before they have been enciphered, or after they quent release in paraphrased form, or by queing re-enciphered into a non-secure cryptosystem. Any code or cipher, even one which like a one-time cryptosystem is defined as unconditionally secure, is in practice only as secure as the An eavesdropper faced with ciph text that cannot be deciphered often retains the encrypted material in the hope that success may come later, when perhaps some of the plain text will have
come into possession as described above; or when time has allowed careful observation of what happens after the receipt of the message by the addressee. Many cryptosystems that may be difficrypted messages may reveal their algorithms or their keys when attacked with known text and this information may then open the lock to other messages past and same cryptosystem.
the encrypted message using all or some of the possible keys permutations until a meaningful result is achieved. Modern digital systems may require a very ex-
tensive search indeed; a key of 100 binary digits will represent 2^{100} possibilities, a mind-boggling total.
In the years BC (before computers) In the years BC (before computers)
cryptography depended for absolute security either on keys of unlimited
length, great ingenuity in the use of algorithms, or by doubling or tripling the various processes (e.g. doubletransposition ciphers). Today the

WIRELESS WORLD. SEPTEMBER 1980

emphasis is on making the transforma tions of the plain text so complicated that even with massive computer powe search out all possible solutions; such ciphers are then termed computatio nally secure. However not all cipher that are thought to be secure agains computer attack may be so in reality. sent mathematicians lack the tools for proving systems to be computationally secure and the history of cryptography demonstrates all too well that sup posede flaws".

Security of codes
The so-called one-time pad, that is to say the provision of truly random paired accepted as onited length, has long been accepted as one of the few systems that
are unconditionally secure. The use of such a system however involves màny practical difficulties, including the pro duction and distribution of the pads or messages then for multiple-address the entire system in jeopardy; if operated only with paired-users the production and distribution costs be machines is iable. Physical securty of may sometimes by suborned
In practice the cage and keywheels of Enigmelin machine and British Typex Enigma, Sigaba and the British rypex high-grade traffic until the development of purely electronic, on-line systems based on digital techniques.
impregnable against a listener who has access only to the enciphered messages, but may be fallible if some or all of the plain text of some of the messages is which this situation may arise, either from system faults, human errors or by deliberately inducing the user to send a message of which at least some words again it is n to the codebreaker. Then again it is usually necessary for the
sender to include key groups which provide instructions for the decoder, or indicate the priority of the message and which may reduce its security. The techniques of traffic analysis, particumunications, can provide valuable in-

Fig. 4. Basic outline of the NBS data encryption standard in which the plain text is
divided into 4-bit bytes and subjected to 18 stages of substitution and transposition

Fig. 5. Basic arrangement of DES shows the form of structure of the data manipulation and de.
logic.
telligence even when the code remains unbroken. Deception techniques, in cluding the holding and subsequent message at a different time, or (where the code can be broken) the alteration of its contents may be less applicable to the commercial than the military scene, but cannot be disregarded altogether.
Deception operations which were aided by the use of codes thought to be secure or in which warning check signals were disregarded included the now wellknown British "Double-Cross" and the radio links.

Human fallibility, including failure to operate strictly the signalling rules of a system, plays an important role in cryptanalysis. It was once my ex-
perience to decode a message made secure by a one-time pad with a plain text that read: "Hawker is not repeat not to have access to the code books" When I duly presented this to the adcontinue decoding his messages as before! Humans have a habit of defeating systems.
The existence of a communications channel carrying coded messages pro
sed users, who seek access to the
channel for their own purposes. When the Americans built an elaborate defence microwave network in Vietnam it was regularly used and much
appreciated by the Viet Cong. At a appreciated by the Viet Cong. At a blish their own private networks of communication.

Data encryption standard
During the past few years the relatively open study of modern cryptography, particularly by IBM and at Stanford University, California, is leading to a better understanding of the require--
ments of systems for the protection of commercial and administrative data transmission. The IBM work has led directly to the establishment of a data
encryption standard (DES) for the safe encrystission of sensitive (but not highly transmission of sensitive (but not highly
classified) information. DES is based on work by IBM, including six years development work by Tuchman and Meyers of the Communications Systems Development Lahoratory in Kingston, New
York originally for a cash-dispensing York originally for a cash-dispensing
scheme for a London bank. The US National Bureau of Standards with the advice of the American National Security Agency have established the validation of hardware based on this complex non-linear algorithm device design is checked for malfunctions and to ensure that the output can never contain the key or plain text. However,
the establishment of DES has already the establishment of DES has already
sparked off a vigorous debate as to the degree of security it provides and whether it would not have been better to develop an alternative, probably more secure, system of a new form of systems (third column).

DES provides a ciphering algorithm or set of rules involving both substitucapable of being implemented in current 1.s.i. technology: Figs 4,5 and 6 . Each data block passes through 18 data-manipulation stages in which 16 different internal coding keys are de-
rived from a 56 -bit main key (with 64 -bit input coding). This provides 2^{56} or 10^{17} keys, presenting a codebreaker with the need for a truly massive search, always
provided that nothing is known about the enciphering key. Diffie and Hellman, advocates of the public key system, pointed out that knowledge of even a quite small part of the basic key
would greatly reduce the search required, and that l.s.i. technology now makes it possible to contemplate searches of gigantic proportions. They postulate a decoding machine using a keys per second, so that even the full 10^{17} keys could be searched in about a day. This modern version of "Colossus" would cost an estimated $£ 10$-million, with an average cost per solution of organisations, including governments, could positively contemplate building such machines, the mere possibility tends to send shivers down the spines of those who are intending to trust their There is some suspicion, reflected in

Fig. 6. Simplified arrangement of the NBS-certified Intel 8294 data-encryption microprocessor which forms a implementing DES up to speeds of 640 bits/second or at higher speeds by parallel connection of devices.

American comments, that the Nationa Security Agency may not be over-keen
to promote the adoption by the business to promote the adoption by the business
community of codes that they could not themselves break and that they persuaded IBM to opt for a 56 -bit key.
Memories die hard of NSA's Project Shamrock which is alleged to have scanned all telegraph and telex traffic passing in and out of the United States for key words (British readers feeling
complacent should recall the 1967 cable-vetting furore).
Several systems using basically similar techniques have been proposed or developed for application to computers,
including home computers, where no including home computers, where no
data transmission is involved, to prevent unauthorised users from withdrawing information or to prevent software piracy. An 80 -bit key is used by Cryptext for a low-cost home computer
system and a cryptomicroprocessor has been proposed by Best. The idea is to encipher computer programs or stored data and then decipher them as each instruction is fetched for execution.

Public-key systems

Although the DEC algorithm is being widely, if at times hesitantly, welcomed by industry and commerce, and suitable l.s.i. devices are appearing on the mar-
ket and incorporated in systems, it has to be accepted that it is a system of limited security, even though nobody has yet proved publicly that this is the case. An alternative family of novel cryptographic techniques, known as
"public key cryptography" has recently been advocated on the grounds of providing greater security in the long-term, although at present it is at a less advanced state of development
Public-key systems were first pro-
posed by Merkle posed by Merkle, Diffie and Hellman at
Stanford University; in these, only the addressess would hold the deciphering key which would not be available to the person
Fig 7.
It is claimed that public-key systems overcome the problem of distributing key generators or one-time tapes by separating the enciphering and de ciphering functions. In effect they pro-
vide a technique by which the sender of the message enciphers it for a particular addressee without herself having the ability to decipher it. The rather convo luted mathematics of public-key cryptography has been set out in some detail
by Hellman in Scientific American (August 1979) and no attempt is made to reproduce here the 10 -page explanation given here
But, in brief, several systems have been proposed in which the family of enciphering transformations can be separated from the family of deciphering transformations in such a way that given a member of one family
it is not feasible to find the correspon it is not feasible to find the correspon-
ding member of the other. Front runners among these systems are the

WIRELESS WORLD, SEPTEMBER 1980 RSA public-key cryptosystem devised nitials makemir and Adleman (whose called "trapdoor knapsack" system by Merkle and Hellman (trapdoor is meant to indicate a one-way or irreversible derived from a class of mathematical puzzles that require the solver to determine how many rods of the same diameter, but of differing lengths, wou In practice, a public directory indicate the addresses's encryption key number but not his private individual decryption key. The system depends on is the study of the properties of int , hat is the study of the properties of integers. tablished by using integers that separate the two algorithms. In a much implified sense, the system can be multiplication than the traditional polyalbabetic shifting (addition) of the running key and the plain or partly coded texts as already outlined in Figs 2 \& 3 .
In the RSA system, developed at MIT, hultiplying is based on the concept that factoring is extremely difficult. For example, whereas two 100 -bit factors can be multiplied electronically in a
fraction of a second, the reverse process of factoring them might take a million years even with a one-microsecond instruction time.
All the public key systems that have been proposed face the criticism that the DES they are only at a relatively early stage of development - and for this reason may never be fully deveoped for commercial applications. ques is that they are "read only" sysems and so, for example, would not permit data read out from remote intruments'(in say a host country) to be doctored en route. Yet at the same time a decryption key could be made avail can also provide an authentic digital signature as it is no longer possible for an addressee, himself or at any of his terminals, to encipher a message purof course, can be done with all conventional cryptosystems. The public-key approach clearly has many attractions, especially in eliminating or reducing min and the problems or key distribu

Secure - but how secure
At the 1979 British Association meetin Sir Noman Lindop, former chairman of he Home Office data protection comEurope in enforcing legislation to pro tect the public from the abuse of computer-stored personal data and that we are becoming "an illicit data haven." only one aspect of this subject, it is one

that seems likely to be of increasing concern to systems designers. As David Kahn states in his introduction to The most important form of secret intel ligence in the world today". Its ramifications are now spreading well beyond the confines of the military, diplomatic and intelligence communities.
Codebreaking can be helped by ana-
lysis of the electrical interfer radiated by nearby coding equipment o even by directing strong radio signals the equipment and then analysing what occurs, rather as analysis of the sound equipment could provide ant eavesdrop per with valuable clues as to its opera tion. Cryptanalysists are by no mean restricted to theoretical methods of solving codes, and for example an elec may provide useful information shape Many electronic engineers in the U are today directly concerned with the implementation of data protection sys ems; the current American con the desirability of drawing on the past pre-electronic history añd experience of cryptography. Nobody wants to keep e-inventing the wheel, or more mportantly, re-inventing squar uccesses of British cryptography should not be forgotten. How man lives and ships might have been saved if for example, the Admiralty had heeded he was Fleet Wireless Officer in th 1930s, to develop machine code ffering greater security than the hand odes then in use? In the outcome th broadcast instructions to the British and Allied merchant ships were read by the autumn of 1943 and many of the Royal Navy messages were read in the first year of World War II.
*Those American cryptographers con cerned at the danger of uncritica concur that this is a difficult system to break and that it could well fufil all normal commercial requirements for the next 5-10 years - but stress that only limited security against a determined eavesdropper. The greatest danger of a cryptographic system remains, as always, the false sense of security it may give.

Fig. 7. Simplified outline of a public ker system in which the key and basic algorithm used by the sender can be
publicly known but each user keeps pecret the decoding key. The form of data manipulation used by the sender prevents decoding except by a holder of the message is enciphered.

Further reading

The following sources have been used possim in this article:
Whitfield Duffie and Martin E. Helliman, Privacy. Whitfield Duffie and Martin E. Helliman, Privacy.
and authentication: :an introduction to cryptoand authentication: an introduction toc crypto-
graphy, Proc IEEE, vol. 67 , no. 3 , March 1979 (with extensive biblography).
Martun E. Hellman, Mathemat cryptography, Scientificic Ametican;; August
 Harvey J. Hinden, LSI-based data encryption
discourages the data thief, Electronics, June 21, 1979. John Beaston, One-chip data-encryption unit accesses memory directory, Electronics,
August.2, 1979. August. 2, 1979.
Harvey J. Hinden. New security planned for
data, Electronics August 16, 1979. Bob German, Encryption the key to security,
Elactronics Weekly, September 12, 1979

Miniature, ten-line

 telephone exchange.Several small errors, for which we apologize, crept into this article in th August issue. Firstly, the open contact of A_{1} on p. 42 should go to the ope contact of D_{2}, not the junction of FC_{2} make contact connected to the closed contact of D_{2} is FC_{1}, not FC_{2}. Lastly, in able 2 on p.45, the relays operated on

As you like it: circuits or fields

An introduction to Poynting's Theorem

by D. A. Bell, F.Inst.P., F.I.E.E.

Like Faraday [Maxwell] looked upon minor of conductors in electricity as erminations of the lines of force of

 the surrounding electric fieldEncyclopedia Britannica
Physics offers several other examples of hysics offers several other examples of
ual representation - light waves and photons, electrons as particles or waves (electron diffraction) - but only i electrical phenomena are the two dual epresentations, circuit and field, is only in the present century that there as been such a tremendous develop ment in the techniques of circuit anaysis, while earlier scientists such as 879) and Poynting (1852-1914) egarded fields as pre-eminent. (It hould be added that fields involve the use of vectors, and often difficult geometric problems, whereas circuits f one-dimensional quantities.) The development of waveguide and associated echniques, for which circuit represent ation is impracticable, may tend t redress the balance.
The first question asked nowadays is "uestion overlook the fact that th established alternative to fields is action-at-a-distance. We are so used to the idea of gravitational attraction that problem which much concerned people before Newton, namely how can the sun exert a force on a planet acros ric and masietic fields space? Elec duced to 'explain' similar remote forces in electromagnetic phenomena an Maxwell showed that such fields could e propagated as waves, in empty space radio without displacement (See Wireless World, August 1979.) Evidence in support of this idea of electromag netic fields is the fact that their velocity of propagation can be observed. An circular loop of wire acquires radiatin properties, i.e. becomes a useful frame aerial instead of simply an inductor when the time taken for the magnetic field to spread from one side of the loop of the period of the alternating current which is producing it.

So acceptable is the concept of field dis waves that scientists actio ooking for gravity waves (without much success so far). It is true that discarding the "luminiferous aether which was supposed to be an all romagnetic waves, means that field which were originally thought of as "states of stress in a medium" must now be regarded as "properties which exis ccept than ther indispensable cepts of modern physics, such as the wave nature of the electron and the quantisation of energy? The difficul oncept of wave mechanics (sometime described in terms of "waves of pro or the whole of modern solid-stat echnology. Einstein's proposed solu ion of the problem of gravitationa action-at-a-distance was to enhanc body continues in a straight line, by eplacing "straight line" by "shortes ine in "curved' space" with the 'curva ture' being due to the presence of mas The 'curvature' of space by the presence experience as fields in empty space Whichever way you go, modern physics demands faith in something which is not comprehensible in term of everyda experience: the laws of physics deman coherent structure of theory which accords with all experimental evidence Let us now look at the simples example of the circuit/field equi valence, namely the energy stored in a parallel electrodes separated by dielectric which may be anything from

fig. 1. Electric field and charges in a parallel plane capacitor.
acuum to high-permittivity ceramic Fig. 1). From a circuit viewpoint we sa charge q from one plate to the other is $q v$ where v is the potential difference between plates at the time of transfer ince v increases as the charge builds up ergy stored) is expressed in terms of the final charge and potential difference as $\begin{aligned} & W_{c}=1 / 2 \mathrm{QV} \\ &=1 / 2 \mathrm{CV}^{2}\end{aligned}$
ising the relation $\mathrm{Q}=C V$. But accordin o the theory of electromagnetic fields he energy stored in the dielectric is $D E$ per unit volume where E is the quantity equal in magnitude to the harge per unit area of the conducting surface bounding the field ("the surface on which the lines of force end", as But E is V / d and D, being equal to the charge per unit area of plate, is Q / A and the volume occupied by the field A. Thus the total field energy should be $W_{f}=(d A)(1 / 2 D E)$
$=(d A)^{1 / 2}(Q / A)(V / d)=1 / 2 Q V \ldots$. which is the same as (la) so the equicaveat is that the formula " $1 / 2 D E$ per unit volume" has been rigorously proved only for the average over an nfinite volume (because the proof devector field quantities vanish at in finity) but it has always worked when applied to particular finite cases. But what is the significance of the xtra field quantity D which was slipped was said to be equal to the charge den sity at the boundaries of the field? In well behaved dielectric (linear and iso tropic) D is simply equal to ϵE where ϵ is the dielectric constant of the medium
But what is the dielectric constant of acuum? This is where we tend to get a conflict between physicists and engin ers. Physicists used to use the c.g.s. system of units, in which the dielectric equal to E in a vacuum. (Befor assuming that they are the same thing as well as being equal in magnitude note that it was the rate of change of D not E, which Maxwell called displace mat they must be identical, because th only physical entities which really exist

WIRELESS WORLD, SEPTEMBER 198
are space and sub-atomic particles; and material medium is due to the reactions to the field of the various charged particles in the medium. From an engineering viewpoint, however, it is "convenient to split the fields between independent of the ane former being medium. In electrostatics the total value of D integrated over a surface is equal in SI units* to the enclosed charge from which the "flux of electric induction" D originates (Gauss's theorem).
This is always true, whatever the medium, so D can be regarded as a primary field which emanates from charge, the "cause" of any observed field E is an "effect" of electric force nitude is found by dividing D by the dielectric constant ϵ of the medium which for a vacuum is $\epsilon_{0}=8.854 \times 10^{-12}$. (The units are farads per metre.) The system is to enable the system to incorporate ampere, metre, kilogram and second as basic units. One can test directly the inverse-square law of force between two concentrated charges, but
one will need a constant of proportion ality like the gravitational constant in the formula for the gravitational force between two masses. If the formula for
force between two charges
Force $=\frac{q_{1} q_{2}}{4 \pi r^{2}}$
is to apply with force in newtons, (3) in coulombs and distance in metres hen for a vacuum ϵ must be given the side of equation $(3){ }_{0}$. The right-han introducing electric field forch Force $=q_{1} E_{2}$
where
$E_{2}=\frac{q_{2}}{4 \pi e r^{2}}$
(4)

The subject of magnetism has been enfused by the use of permanent ma ets and is more complicated becaus the simple (scalar) relationships of eector relationships. The equation for he element of force between two curcurrent strengths i_{1}, i_{2} is
$\mathrm{dF}=\frac{\mu}{4 \pi} \cdot \frac{i_{1} \mathrm{dl}_{1} \times i_{2} \mathbf{d l}_{2} \times \mathbf{a}_{r}}{r^{2}}$
where heavy type indicates vector uantities, \mathbf{a}_{r} is a unit vector in the irection and the crosses indicate vec metic multiplications. This also can be plit into a current and a field of mag split into a current and a field of mag
$\mathrm{dF}=i_{1} \mathbf{d l}_{1} \times \mathbf{B}_{2} \times \mathbf{a}_{r}$
$\mathbf{B}_{2}=\frac{\mu}{4 \pi} \cdot \frac{i_{2} \mathbf{d l}_{2}}{r^{2}}$
If B is uniform along the length of current-carrying conductor, and
${ }^{\text {SI }}$ units are an international set of units, by tow universally adopted,

Fig. 2(a). Equivalent circuit of a source G connected by a transmission with a multi-turn centre-tapped inductor: (c) as (b) but winding of inductor reduced a few turns; (d) inductor winding The conna tingle centre-tapped turn. and not at all practical.)
hroughout at right angles to it, equa ion (6) can be simplified to an arith metic relation
$F=$ Bil
which can be used for exampl. (7) redict the force on the coil of moving-coil loudspeaker. From Maxell's fourth equation, expressed in curl $\mathbf{H}=\mathbf{J}+\frac{\mathrm{d} \mathbf{D}}{\mathrm{d} t}$
we see that \mathbf{H} depends only on currents nd charges (\mathbf{J} is current density) and is ndependent of the medium. Enginee alled it magnetomotive force, while the
magnetic flux B is regarded as an "effect": one has to provide the appropriate magnetomotive force in order to establish the desired flux in a given electric and magnetic systems are not quite symmetrical since in the electric system field D is continuous across a boundary between different media, but in the magnetic system field B is con-
tinuous. This is related to the point that 'lines' of D terminate on electric charge while 'lines' of B are always closed
loops.
After this lengthy digression to estabAish electric and magnetic fields we can come to Poynting's theorem (proposed by J. H. Poynting in 1883) that the flow of energy in an electrical system which
is usually expressed as the circuit is usually expressed as the circuit
quantity vi can alternatively be exquantity $v i$ can alternatively be ex-
pressed in terms of the power flow per pressed area of a surface drawn through the electric and magnetic fields sur-
rounding the conductors. In vector rounding the conductors. In vector
notation this flow is represented by the notation this flo
Poynting vector
$\mathbf{P}=\mathbf{E} \times \mathbf{H}$
The vector \mathbf{P} is at right angles to the plane continuing \mathbf{E} and \mathbf{H} and its magnitude is $E H \sin \theta$ where θ is the angle between E and H; and in most cases of that the magnitude of P is simply EH. The coaxial cable provides an example in which the fields are known and limited in extent (within the cable); but with the radial non-uniformity of the fields and has therefore been relegated to the appendix. A strip transmission line provides an example with simple rectangular geometry (if one neglect fringing at the edges) and provides an ment of H in amperes per metre.
The circuit shown in Fig. 2(a), with he inclusion of the capacitances in dotted lines, is the lumped equivalen circuit of a transmission line between
source G and a load L. Note that we are not in any way restricted as to frequency. The source G may be simply a battery supplying d.c. or an a.c enerator; and the load may be simply the latter case there may be a phase angle between electric and magnetic fields, but this is taken care of by the fact that the Poynting vector uses in stantaneous values of field and the
average power flow is to be found by averaging P over a complete cycle of the alternating current. In Fig. 2(b) the inductive part of the equivalent circuit is shown as a solenoid of length wound with a fairly large number n_{1} of
turns of thin wire carrying a small cur rent i_{1}. The load is inserted at the centr of the inductance. If end effects ar neglected, the magnetomotive force is $H=n_{1} i_{1} / b$.
In Fig. 2(c) the coil has been re-woun th a small number n_{2} of turns copper strip carrying a larger current i_{2}

As H will be the equal to $n_{1} i_{1}$ the value process has been pushed to the limit with only one turn. Alternatively the changes can be thought of as taking the
original winding with groups of different numbers of turns in parallel instead of in series. Clearly the number of urns, or the series/parallel connection of turns, does not matter as long as the solenoid is kept constant. For Fig. 2(d) in particular one can write
$H=i / b$ amperes/metre(11) nductor of Fig. 2(d) into the strip transmission line of Fig. 3. The magnetic feld in the space between conductor will remain unchanged at $H=i / b \mathrm{~A} / \mathrm{m}$. Assuming for the moment that the re sistance of the transmission line is negi-
gible so that the potential difference between the two strips is v throughout he length, then with separation d the lectric field is $E=v / d$ volts/metre. The magnitude of the Poynting vector for cross-sectional surface is
$\mathrm{P}=E H=(\nu / d)(i / b)$ -section is bd area and the area of cross-section is
flow is $b d P=v i$.
If the voltage drop along the line is not negligible, the conditions near the pper strip are as shown in Fig. 4. The lectric field no longer consists only of

to the volt-drop per unit lengt f conductor. The resultant electric fiel Poynting vector P^{\prime} does not point straight along the gap, but has a com ponent (proportional to $R_{1} i$ and H and herefore to $i^{2} R_{1}$) pointing into the conom the field into the conductor which matches the $i^{2} R$ loss. The Poynting ector method of calculating powe low is always exact, and you may us whichever is more convenient. On bviously uses the field calculation fo waveguide and radiation problems.

APPENDIX

ower flow in lossless coaxial cable
cross-section of a coaxial cable having A1. Calculation is simplified if it is assumed that (a) the working frequency is so high that
one can neglect penetration of the currents into the conductors and (b) resistive voltage drop along the length of the conductors is negligible. (In fact conditions (a) and (b) are pends on the resistivity.) At distance r from he centre the magnetic field

the inner surface and decreases towards the outer, but its relationship to the difference of potential v between the two surfaces is not
obvious. By using Gauss's theorem as in the procedure for finding the capacitance be-

fig. A1. Cross-section of coaxial line with inner and outer conductors of radii and b. The direction of power flow, $E \times H$, is into the paper

W through an annulus between radii and $+d r$ is given by the magnitude $E H$ of the Poynting vector multiplied by the area $2 \pi r$.d of the annulus. (The direction of the Poyning vector is of cou
the coaxial system.)
$d W=E H \cdot 2 \pi r \cdot d r=i v . d r /[r \ln (b / a)]$. (A3)
The total power flow is then
$W=\frac{i v}{\ln (b / a)} \int_{a}^{b} \frac{d r}{r}$
But the value of the integral is $\ln (b / a)$ so $W=i v$
If the f the resistance of the conductors significant, then just as in the case of the strip
line there will be a component of E parallel to ine there will be a component of E parallel to
he length of the system and a component of the length of the system and a component on
the Poynting vector pointing into the con
ductors to account for the $i^{2} R$ loss.

BOOKS

Telecommunication System Engineering, by
Roger L. Freeman, is described Roger L. Freeman, is described as "a textpractising engineer, planner and telecommunication engineer." The view of telecommunications adopted is the widest possible, since in 480 pages radio is only allotted 66 ,
which does seem a little cavalier, to say the least. The main body of the book is therefore concerned with the communication over elephone circuits of voice messages, data In the field the author sets out to cover it is difficult to imagine a more complete treatment, starting as it does with a diagram of
two telephones a cable and a batery and wishing with the concept of digital data networks and the economical technical planning involved in national networks. The
author is American, which may mean that some transatlantic terms are unfamiliar, although he has used the UK engineers' term
'bearer', for example, to denote the signalbearer,' for example, to denote the signal-
carrying medium. The book is published at £17.70 in hardback by John Wiley and Sons
Ltd, Baffins Lane, Chichester, West Sussex, Pol9 1UD.

Practical Hi-Fi Sound, by Roger Driscoll, is
the latest in a long line of books intended to clarify the absurd technospeak so carefully
built up by makers of sound equipment. The main difference between this one and a great many of the others is that this author keeps his object well in mind and does not fall prey superiority.
superiority.
The treatment is not detailed, but rather
seeks to answer the seeks to answer the questions which would
be asked by someone who wanted to some of the background to the present state of audio equipment. The two introductory chapters are concerned with musical sounds two sections on equipment, including building instructions for a loudspeaker. The acoustic performance of the listening rooms
is dealt with in the final chapter. The boolk is dealt with in the final chapter. The book
fulfilis its avowed purpose admirably and can be recommended. It costs $f 6.00$ and is published by Hantyn, Astronaut House,
Hounslow Road, Feltham, Middlesex, TW14 9AR.

Fig. 4. Directions of fields and of Poynting v

Simple alternatives to the monostable

Using low-cost gates for non-critical timing circuits

In comparison with other i.cs, c.m.o. monostables are rather expensive, the circuits. In a non-critical situation, for example when a reset pulse is required, heaper solutions are available.
A 4093 NAND Schmitt trigger, costing about $16 p$ per gate, provides the
basis for a satisfactory alternative. Referring to Fig. 1, the high input impedance of a c.m.o.s. gate ensures that, in the absence of other constraints, the voltage at B follows the voltage at A. the bias resistor modify the voltage performance in the following way. After a long quiescent period, the input vol${ }^{\mathrm{B}}$ will be high and the output If a negative pulse is applied by G_{1}, th input to G will go low and the outpu R and C , but not equal to RC , the output will fall. The input potentia must be kept low for the duration of the pulse, otherwise the output will be pre naturely terminated. A positive going the power supply rail but, as soon as a voltage of $\mathrm{V}^{+}+0.5 \mathrm{~V}$ is reached, the ate protection diode starts to conduc nd dissipates any excess change. Th circuit is therefore quickly reset. If the of the pulse directions are reversed. The output pulse length is determined by R and C. As an approximation,解解e that the trigger point of the gat s half way between the two power rails
Using the formula $\mathrm{V}=V^{+} e^{-1 \text { RCC }}$, and sbstituting $\mathrm{V}=\mathrm{V}^{+} / 2$ gives $e^{-t / R C}=1 / 2$ Therefore, $\mathrm{t} \simeq 0.57 \mathrm{RC}$.
This principle can be used with two inputs simultaneously as shown in Fig owever, the NAND property of th gate will not allow the resistors to be onnected to the negative rail.
If a slow fall time can be accepted, which is often the case, an ordinary gat three input NAND becomes a trio of gated monostables costing about 2 p each. If an inverted output is required eplace the NAND with an AND gate or rail and use a NOR gate.
During the off transition of the gate both output transistors are switched on
nd are dissipating power. For this rea
son, long time constants, i.e. slow tran-
sitions, should be avoided. Adding bove circuits produces a monostable which is activated while the input ow, and the RC time constant occur after the input goes high, see Fig. 4. A somewhat more complex arrangement can provide two time constants as not a conventional monostable, it is useful if, for instance, a delayed switch on and off is necessary.
A wide range of RC values can b sed with c.m.o.s. but, to avoid exces the gate protection diodes, capacito

Fig. 1

Fig. 2

Fig. 3
Fig. 6

values below 100 nF should be used. This does not apply to Fig. 4 and 5 as the ircuits do not use the gate diodes. At cause trouble due to the c . s . capacitance, see Fig. 6. The voltage induced at N_{B} by a negative transition of V_{A} is $1 / 2 V_{A}$, and this may not activate the Schmitt trigger. If the trigger is
activated, the time constant will be much shorter than anticipated.
Almost any resistor value above $1 \mathrm{k} \Omega$ an be used, and for long time constants a reverse-biased diode is a useful kig alue resistance. The resistance limit of
$10^{\circ} \Omega$ is set by the input impedance of the gate.

Fig. 4

Fig. 5

'More work on spectrum utilization needed' says CCIR chief

Not enough effort is being put into finding
better ways of utilizing the radio spectrum, better ways of utilizing the radio spectrum,
according to Richard Kirby, director of the CCIR. Speaking at a recent IEE conference in
London devoted to this subject he said that Ltadies of spectrum utililation ought to be
setter recognized as a legitimate and challenging disciplinino of communication science. Many university faculties and research
budgets did not recognize this fact. "The budgets did not recognize this fact. "The
subject may be seen only in a limited perspective of radio interference protection, a
necessary but mundane necessary but mundane appendage to system
development. Or, if seen in a broader perdevelopment. Or, if seen in a broader per-
spective, as fundamental study to expand the utility of the spectrum as a resource, there is a question of support; return on investment
is uncertain, indirect, and long-term. It is clear that there are not very many Ph.D. theses on spectrum utilization topics. Some
of the best talent in communication science of the best talent in communication science
ought to be encouraged to explore and develop this field. It would seem to me that the IEE is in a good position to foster this", Earlier Mr Kirby gave an outline of the
work in this field that the CCIR (a per manent body of the ITU) will be doing in the
aftermath of the 1979 World Administrative aftermath of the 1979 World Administrative
Radio Conference at Geneva. He indicated
five main areas: bandwidth-efficient modulation, frequency re-use, domestic and
regional satellite systems, the role of h.f. and improvement of equipment standards from the point of view of spurious emissions and
unwanted responses.
"Firsti, as regards bandwidth-efficient; interference-resistant modulation: the dominant trend to digital systems for ter
restrial and space systems alike restrial and space systems alike, mobile,
fixed, and ultimately even television, is being greatly spurred by the rapid development of
very large scale integrated circpitry very large scale integrated circuitry...
Spread spectrum has already proven advanSpread spectrum has already proven advan-
tages for rejection of narrow-band interference and reduction of interfering power spectral density. It remains to be seen
whether, by the additional processing gain of whether, by the additional processing gain of
correlation codes, an ensemble of spread spectrum systems can share a given band of
spectrum more efficiently than narrow band spectrum more efficiently than narrow band
signals. The new processing technology signals. The new processing technology
should have a great bearing on "multi-user communications", i.e. techniques by which one or more transmitters are simultaneously
communicating with one or more receivers communicating with one or more receiver
over a common channel in the radio spec trum. "Packet radio", a related random-
access concept, is promising not only for

New Racal company set to cash in on cheque-less banking A further step in the trend to electronic
banking methods has been taken with the formation of a new company, Racal-
Transcom Ltd, which the company claims will be a prime mover in eliminating the need
for cheque books and paperwork in many for cheque books and paperwork in many
financial transactions. The systems which Racal Transcom in-
tends to introduce will be designed to tends to introduce will be designed to
eliminate much of the paper work which eliminate much of the paper work which
possible users such as banks, credit com-
panies, finance houses, airlines and retail posiise, finance houses, airlines and retail
parganisations have to cope with. organisations have to cope with
Announcing the formation Announcing the formation of the new
company, Ernest Harrison, chairman and chief executive of the Racal Electronics Group said, "Electronic funds transfer will
have a major impact on the retail world and have a major impact on the retail world, and
its international growth potential is extremely large. Eventually it could affect almost everyone who makes a purchase
pays for a service or uses a bank.", pays faral-Transcom is a subsidiary of RacalDatacom of Salisbury, Wiltshire and the design team responsible for the development
of the new systems over the last two years of the new systems over the last two years
will be located in separate premises on the same site.

A Racal-Transcom point-of-sale terminal being demonstrated in a busy supermarket. The
customer is using a hand-held device to key in customer is using a hand-held device to kev in
her peersonal code which, for security, must correspond with the encoded account number on her banker's card, which is placed in the
terminal. The customer's bank account is automatically debited and the shop's account

Wata, but also for speech. A resolution of the attention to studies of these new digital techniques which could lead to a whole new approach to channel assignment and the possibility of greatly expanded use of th
spectrum compared with present-day frequency division. At the same time, there is increased emphasis on bandwidth conserva-
tion schemes. Some television bandwidt tion schemes. Some television bandwidth
compression techniques are very promising. compression techniques are very promising.
More conventionally, single-sideband is
finally being seriously More conventionaly, single-sideband is
finally being seriously considered for sound
broadcasting. The CCII has been asked to broadcasting. The CCIR has been asked to
intensify its studies of means of transition to single-sideband broadcasting", The coming h.f. broadcaasting conferencee, while commit-
ted to double sideband for the next plan ted to double sideband for the next plan, also
had on its agenda the specification of an s.s.b. system suitable for future broadcasting. "Frequency-re-use is the objective of some
of the most t. of the most important developments in an
tenna systems for satellites and terrestria communications alike. It is also the motivation for important propagation research,
especially at frequencies below 40 GHz where the main features of propagation are already known. Questions such as how much polarization discrimination can be achieved in
practice, as under rainfall conditions, and practice, al under rainfall conditions, and
how small antenna beamwidths can be maintained through the atmosphere, might at one time have been considered second-
order questions. They are now central to order questions. They are now central to
frequency re-use, as are anomalous propagation effects such as ducting and scintilla-
tion"
tion.",
One the most important technical topics
for for the future of radio communications was the efficient use of the geostautionaty satellite
orbit. "One method to increase the efficiency of the use of the orbit is by reduction of inhomogeneity. Sharing is more difficult, less efficient, among a variety of beamwidths,
power levels, and receiver sensitivities than power levels, and receiver sensitivities than
among a homogeneous set of these system requirements. So only a degree of
homogeneity can be sought, in terms of the homogeneity can be sought, in terms of the
range of certain parameters. Other aspects range of certain parameters. Other aspects
being studied are the level of permissible inter-network interference, and the antenna characteristics for both earth stations and
satellites." The CCIR preparatory work for à satellites." The CCIR preparatory work for à
satellite conference in 1984 was centered on a CCIR working party, which would now also consider methods for ensuring equitable
access for all countries to the geostationary satellite orbit.
The h.f. part of the spectrum was "seen as
the most economical method for thin route the most economical method for thin route
intermittent communications which do not intermittent communications which do not
yet justify microwave or satellite links. \ldots It may remain most susceptible to congestion
and interference. Thjere is a considerable and interference. Thjere is a considerable
technical challenge here to to make systems
more interference resistant."

Open Channel (CB) implications in decisions about model control band

Announcing the government's intention to
exempt users of model control transmitters metal detectors and pipefinding equipment
from the need to licence such equipment from the need to licence such equipment, the
Home Secretary said that current holder Hicences would be able to "pursue their hobbies exactly as now, and that. . . this will
lead to less bureaucratic control and greater lead to less bureaucratic
freedom for individuals.
He said that he would be bringing forward proposals in the next few months in relation
to the Wireless Telegraphy Act 1949 and to later stage to identify other categories of radio device which can be dealt with simi-
larly. larly.
Approximately 93,000 licences for model
control equipment had been issued up to th end of ig99 and when the new regulations come into force, these licences will be forexisting operating conditions will be used so that frequency and output power requirements will remain unchanged. In general,
users of the model control band $(27 \mathrm{MHz}$) users of tred to model control band (we 1.5 W radiated power, and the
rest current licence fee is $£ 2.80$ for a five-year period. licence fee for pipefinders and metal
The
detector equipment is $£ 1.40$ for five years detector equipment is $\mathrm{f1.40}$ for five years and
the number of licences issued has risen from the number of licences issued has risen from
2,000 in 1972 to 150,000 in December 1979,
reflet such equipment by treasure-hunting en thusiasts. However, exemption of meta in any way absolve users from the need obtain permission to enter, search and dig and and to kor
Equipment will no longer be subject to the
type-approval procedure, so the exempti conditions which will have to be met so as to condiditions will be frame other radio users. The all existing type-approved equipment Almost simultaneous with william White law's announcement was Timothy Raison' 7,800 letters on the subject of c.b. and 40 petitions carrying thousands of signatures. n replies to questons he said that the annu
cost to the Post Office of investigations int complaints of interference to "non-broadcas services" and into all forms of illicit installa
tion or use of radio equipment million. The costs incurred in dealing with ilicit use of 27 MHz were not recorded separately and "no figures are available for he cost of controlling imports of prohibite He also r.
Oth April 1979,94 persons were prosecuted use of c.b. equipment at 27 MHz , and a further 135 cases are pending. In 1978 a total of three persons were convicted of such offences and State at the Treasury, Peter Rees, disclose hat 721 sets were seized by Customs an excise in the first quarter of 1980 and a tota of 2,200 during 1979, might be that the gen of these official trend o more than the appernmearance of movesemen on the Open Channel issue. With c.b. en
thusiasts becoming more vocal as a result of ontinuing stalling tactics from bot
government and Home Office (the discussion
document promised in April has not
tion for model users is a red herring designetion for model users is a red herring designed
to, on the one hand, suggest more freedom of access (it is only an official sanction) to the spectrum, and on the other hand to consolidate the decision not to introduce Open
Channel at this frequen De-regulation could have the effect of encouraging more widdespread use of 27 MHHz
by modellers, who might then very by modellers, who might then very jealously
guard their spectrum "slot", perhaps even introducing a "self-policing", activity . . . "Kamikaze model aircraft crashes in flames
On illicit radio shack." on illicit radio shack.'
The only positive
from these positive conclusion to be drawn
that something pronouncements is that something may well happen at some
future date, having been duly considered and future date, h
fully costed.

News in brief

The Mobile Radio Trade Association, formed in 1978, was set up with the intention of
obtaining for its -members effective representation with both manufacturecrs and
statutory bodies statutory bodies. The association's aims and
an outline of the facilities it can offer to an outline of the facilities it can offer to
interested companies or fleet operators are available from its offices at 9-11 Lower Addiscombe Road, Croydon, Surrey, Tel: scription is $£ 50$ plus v.a.t.
South London College will be running course of eight lectures, the first starting on 14 October, 1980 and the last on 2 December tions." The course is intended to provide comprehensive technical introduction to optical communication devices and system nd their application to multi-channel elephony and wideband services. The course should be made to A. A. Rowlands, South ondon College, Kinghts Hill, London SE2 TX. Telephone 01-670 4488

Plessey expands and contracts The Secretary of State for Industry, Sir Keith Joseph, officially opened the Plessey p.c.b plant at South Shields on July 11 th, and also Plessey Circuits Ltd the new company Thessey Ciircuits of the plan investmient of $£ 5$ million, is to produce mainly plated-through-hole (p.t.h.) p.c.bs on a large
scale for marketing in the UK and in Europe at competitive prices by using modern mas king, etching and plating techniques and production line which is almost completely
controlled by a central computer. V.d.us strategically placed at each point in the line give all the information required by the pro-
cess operator including audible "cautions" cess operator including audible "cautions
and "warnings" of out-of-tolerance condi tions such as high etch bath temperature, etc.
The plant has a production capacity of The plant has a production capacity of
over 2.5 million p.c.bs a year and currently over 2.5 million p.c.bs a year and currently
has a workforce of 185 people, which is expected to rise to 300 . Plessey pre-tax profits
for the year ended March 31,1980 , were 30% up at $£ 60.1$ million. In a cold and precise
paragraph released in June, the company paragraph released in June, the company
also refers to "extraordinary items \ldots ($£ 4.7$
million) million)... "which includes the cost o
eliminating the loss-making businesses eliminating the loss-making businesses of
Garrard and Plessey Automatica Electrica Garrard and Plessey Automatica Electrica
Portuges. Losses have also been eliminated
on Strowger activity at Edge Lane."

Part of the new facility at Plessey Circuits Ltd, South Shields, showing the drilling and routing
area. Eight-spindle driling / routing machines are in use, providing a hit-rate of up to 350 per minute, with routing rates of 4 ft per minute to a positional accuracy of plus or minus 0.0008 in
mind

 speech by King George Vo n a 6 mm steel tape. This tape recorder, which was featured during May
at the Bridguvater Exhibition (Admimal Blake Museum)
is roadocasting in the Twenties and Thirties'

Unsuspected gremlins at work in hospital computing

According to an item in Reports on Research
(Massachusetts Institute of Technol (Massachusetts Institute of Technology),
computer-based administrative and medical information systems in hospitals in the US, are prone to interference by hospital staff. In
some cases this interference which is often some cases this interference, which is often
accomplished through subtle processes such as non-co-operation in schemes to change from manual to automatic systems, is de-
trimental to the running of hospitals and may trimental to the running of hospitals and may
be detrimental to the health of patients. Alan Dowling, a doctoral candidate in health management and management infor-
mation systems at MIT's Sloan School of mationstems anse
Management, defines staff interference as Management, defines staff interference as
"instances where a member of the hospital
staff deliberately actsor foils to act staff deliberately acts or fails to act, so as to
oppose, retard, hinder or impede a system's oppose, retard, hinder or impede a system's
implementation." He says the interference
can be overt can be overt or covert, violent or non-violent
and can range from "passive non-coand can range from "passive
operation to physical destruction." Dowling conducted a survey of 40 hos-
pitals and as a result of findings decided that pitals and as a result of findings decided that
this form of interference had occurred in at this form of interference had occurred in at
least half of them. He believes the reasons for
this behaviour least half of them. He believes the reasons for
this behaviour are more complicated than
simple resistance to chane although this is simple resistance to change, although this is
an underlying factor. He cites other causes an underying factor. He cites other causes
such as human organizational problems
which the system may which the system may aggravate, difficulty in dealing with hardware and software prob-
lems, insufficient resource support for the implementation effort, lack of user involvement, changing staff reward structures and
failure to meet staff expectations becaus of failure to meet staff expe
"overselling" the system.
As the number of hospitals attempting to change to computer-based systems grows, so
the negative aspects of computer-bwashing the negative aspects of computer-bashing
may be more seriously felt, with direct effect upon patient care. The problem isn't unique to hospitals, according to Dowling, and is
fairly widespread in industry, but emerges as
more serious in hospitals, where there is a
"high rate of turnover among system venhigh rate of turnover among system vengenerally being ignored.
Where patient care Where patient care is concerned, as Dow-
ling points out, potentially life-threatening ling points out, potentially life-threatening
situations could result from a practitioner situations could result from a practitioner
basing treatment on erroneous data. In his
report, he traces three case histor report, he traces three case histories of
interference and isolates five major forms of interference and isolates five major forms of
interference. The most common form, he says, is passive resistance, in which a staff
member deliberately fails to co-operate with member deliberately fails to co-operate with
other staff members or system specialists who are trying to implement the system. In one hospital, the chiefs of several
medical departments, medical departments, themselves opposed to
one aspect of a system, quietly ignored the one aspect of a system, quietly ignored the
requirement to make their staff available for
system training system training over a prolonged period.

Two-way radio

 installed in cavesThe network of caves below the site of Nottingham Castle is to be served by
two-way radio system, the equipment being supplied by Pye Telecom munications for the City of Nottingham's Technical Services
Dept. These caves are open to the public for guided tours and as a result of difficultities experienced by elderly visitors negotiating
the slopes and bends, as well as for security the slopes and bends, as well as for security
purposes, the city's administrators decided to install a base station at ground lievel, supple-
mented by several "Pocketfone" portable mented by several "Pocketfone" portable two-way transceivers.
The scheme will enable guides, who are not
permitted to permitted to leave their parties once under-
ground or send a member of the party for ground or send a member of the party for
help, to summon medical aid instantly.

Marconi to supply military equipment to China A $£ 40$ million contract for the supply of electronics equipment "for defence pur-
poses" has just be signed by Marconi Avionics and China. The contract calls for delivery of equip-
ment and associated trials and includes the ment and associated trials and includes the
establishment of some manufacture under estabishment of some manufacture under
licence in China. The main body of the work, which the company says will create several
hundred skilled jobs in Kent, Essex and hundred skilled jobs in Kent, Essex and
Hertfordshire, will consist of engineering, production, on-site trials and product sup-
port. port.
Marconi supplies avionics systems for 150
different aircraft and in addition to supMarconi supplies avionics systems for
different aircraft and, in addition to supplying a wide range of electronic equipment
for aviation industrial and military applicafor aviation, industrial and military applica-
tions, has already established the production of fuel flow measurement equipment under licence in China.

News in brief

 Illegal c.b. operator Thomas Hanson, whosecallsign is Captain Beaky, will be getting his
transmitter back from the Home Office in. vestigators who confisticated it after a raid
on his car. Although he was fined £80 for on his car. Although he was fined $£ 80$ for
installing and using the equipment in a
vehicle, the magistrates vehicle, the magistrates at York, where
prosecuting council Julian Hay had asked for prosecuting council Julian Hay had asked for
the $£ 200$ set to be forfeited, refused to make such an order.

The International Broadcasting Convention
(IBC) will be held from 20 to 23 September (IBC) will be held from 20 to 23 September
1980 in Brighton, at the Metropole Hotel. Further information is available from the IBC
Secretariat, IEE, Savoy Place London WC2R Secreta
OBL.

Newcastle upon Tyne Education Authority is running a course which is designed oto pre--
pare students for the Radio Amateur's
 September 1980 at Gosforth Secondary
School and will run every Tuesday from 7 to 9 School and will run every Tuesday fron 7 to 9
p.m. Candidates for the May June examina-
tions may sit for them p.m. Candidates for the May the school and any
tions may sit for them at
enquiries should be addressed to the prinenquiries should be addressed to the Prin-
cipal, Gosforth Adult Association, Gosforth Secondary School, Newcastle upon Tyne or
by telephoning Newcastle upon Tyne $668439{ }^{2}$

Industrial and Trade Fairs L̇td, have announced plans to hold Components 81 a
Earls Court, from 9 to 12 June 1981. The event will be known alternatively as the Electronics Components Industry Fair and the
company is to invest $£ 400000$ in what company is to invest $£ 400,000$ in what the
exhibition director. Frank Winter, describes as "a major event on a scale comparable to
the Munich the Munich and Paris events and to establish and maintain the international credibility for
the industry." Full details can be obtained the industry." Full details can be obtained
from Industrial and Trade Fairs Ltd, Radcliffe from Industrial and Trade Fairs Ltd, Radcliffe
House, Blenheim Court, Solihull, West
Midlands B91 2BG

Universities and companies to unite in industrial robot programme

At a recent press conference held at the
headquarters of the Royal Society, officials of
the Science headquarters of the Royal Society, officials of
the Science Research Council announced a
£500,000 five-year programme funding in $£ 500,000$ five-year programme funding in
industrial robotics The plans outlined by Peter Davey, the programme co-ordinator, will involve the
realisation of university-bred ideas by comrealisation of university-bred ideas by com-
panies interested in both development of the robots and their exploitation in manufacturing industry. The council says that UK
industry has seriously laged industry has seriously lagged behind its
overseas competitors in taking up robotic techniques and current research activity is "sparse". The main aim of the projected
programme, according to Davey will te to programme, according to Davey, will be to
"leap-frog" the present generation of robots and devices and to provide the research necessary to take full industrial advantage of
the technique as it emerges in the mid 1980s. the technique as it emerges in the mid 1980 s.
A number of vital areas of activity had been identified, includingas the developmentynt of
fast-acting tactile, visual and aural sensory fast-acting tactile, visual and aural sensory
devices, modular robot construction, better, devices, modular robot construction, better,
cheaper and lighter actuators and linkages and work on the effects of wear on accuracy. Other vital areas of interest include optimi-
zation of robot dynamics, research on safety zation of robot dynamics, research on safety
aspects and the development of standards. The first collaboration will take place
between Warwick University, the between Warwick University, the
Basingstoke-based company, LansingBagnall (fork--lift truck manufacturers) and GEC. Lansing-Bagnall's interest lies particu-
larly in the need to produce free-rovin larly in the need to produce free-roving
industrial vehicles, to replace those currently in use which are controlled by taut wire or by optical means. GEC comes into the picture
as the company which will promote as the company which will promote the
so-called "intelligence" in the machine. The so-called "intelligence" in the machine. The
technical problems to be investigated and developed are coincident with those of com-
Catching Halley's Comet by the tail
Giotto, the 14th century Italian painter, who
was also noted for his observations of Hal-
ley's Comet in 1301, is to be comer leys' Comet in 13001 , is to be commemorated
in a related event - the interception in a related event - the interception of the
comet by a satellite. At least, this is the hope expressed by the British Aerospace Dynamics Group, who, under contract to the
European Space Agency, have recently completed a feasibility study of the operation. The satellite, to be called Giotto, will be
based upon the GEOS-1 and GEOS-2
considered in the same light as manufac-
turing needs. He emphasized this by turiting on questions dealing with the
mensibility possibility of domestic robot development by
saying that "Britain will not go broke if the saying that "Britain will not go broke if the
domestic robot does not emerge, but it will if domestic robot does not emet."
the industrial robot does not." Peter Davey felt that, in any event, the
domestic robot would have to exist dirty environment, which might preclude dirty environment, which might preclude
cost-effective development of peripheral equipment.
The SRC

RC has produced a handbook programme, which includes a summary of the main areas of activity. A firm building robots may be a suitable partner in the
scheme if it acts as a "window" through which the academic group may be aware of not just one, but a number of potential
applications which can benefit from the applications which can benefit from the
proposed work. On the other hand, there are few such firms in the UK and those that do
exist tend to be preoccupied with the proexist tend to be preoccupied with the pro-
blems involved in producing their current models.
University or polytechnic groups wishing
to take part in the programme or firms to take part in the programme, or firms
seeking links with such groups, should contact the programme co-ordinator as early as possible to discuss in outline the proposed
area of research and the chan area of research, and the chance of a formal
application being successful. If both factors appear promising, a grant application should be prepared on form RG2 with a supporting case not exceeding 6 pages clearly defining
the objectives of the research the logy to be employed, project milestones and staff and equipment required. Also attached should be a letter from
senior management in the partner firm to senior management in the partner firm to
support the programme of work and to give detailed costings of staff, equipment and
facilities etc. facilities etc.
Grants will normally be made for periods up to 3 years, or perhaps 4 in special cases.
Deadines Deadlines for completion of the final appli-
cation are the SRC's normal ones of 1 April, cation are the SRC's normal ones of 1 April,
15 September and 15 December in any year. F Surtember and 15 December in in any year. available from Mr P. G.
Davey, Co-ordinator of Davey, Co-ordinator of Robotics Pro-
gramme, Rutherford and Appleton gramme, Rutherford and Appleton
Laboratories, Chilton, Didcot, Oxfordshire
Ox11 OQX. Tel. Abingdon (0235) 21900, ext. OX11
6106.

Government go-ahead for Inmos as censure motion falls censure motion falls

The second charge of $£ 25$ million pounds due to Inmos, the state microcircuit company, is to be released by the government and will be supplemented by further amounts up to 22% of this amount depending upon where the production plant is sited in South Wales.	question of siting the new factory. It had originally been the intention to site it in Bristol, where Inmos already has a technological centre. A report on this delay was given in News of the Month in Wireless World August 1980. Both the government and the NEB, of
Announcing the plans for Inmos at the crucial moment in the debate on the Opposition's motion of censure on July 29, Mrs Thatcher said that the plans are expected to create 2,000 new jobs. In addition, seven "enterprise" zones will be set up in areas of economic and physical decay.	which Inmos is a subsidiary, are reported to be looking for private sector involvement as soon as possible and Sir Arthur Knight, the NEB's chairman, said that he expected the company to be self-financing by 1984. Sir second UK production plant set up and, like
Sir Keith Joseph said that he had spent a long time over the decision because of the	that in South Wales, will manufacture ad vanced memory devices.

question of siting the new factory. It had
originally been the intention to site it in Bristol, where Inmos already has a techno-
logical centre. A report on this delay was given in News of the Month in Wireless Both the gover which Inmos is a subsidiary, are reported to se looking for private Sector involvement as
soon as possible and Sir Arthur Knight, the cobs chairman, said that he expected the Keith also announced that there will be a
second UK production plant set up and, like hat in South Wales, will manufacture ad-
vanced memory devices.

A spokesman of British Aerospace
Dynamics pointed out that, important as the Dynamics pointed out that, important as the
mission is, there is no guarantee that it will be approved, although recent events seem en-
couraging. The appropriate-ESA committee couraging. The appropriate-ESA committee
met in mid-July and gave a favourable report, but has yet to decide how the undertaking
will be funded and managed A definite will be funded and managed. A defin
wecision is expected by September 1980 . foreseen by H. G. Wells or Isaac Asimo
Working robot called Commander Bill Developoed by the Research Group at Warwick Developed by the Research Group at Warwick
University, the robot has been speciall
designed to operate over rough terrain and to University, the robot has been specially
designed to operate over rough terrain and to
negotiate steps. decision is expected by September 198
puting in general - communication pro-
blems such as pattern recognition, analyṣis and processing, speech recognition and generation, improved graphics and displays
etc. - typical microprocessor application etc. - typical microprocessor applicat
problem. Comments were made at the press con-
ference concerning the current main appliference concerning the current main appli-
cation of industrial robots - in the automotive industry. It was felt that although there is considerable exploitation on
robots in this field, the natural growth area
lien lies in flexible manuuacturing systems, where
a large number of different product types will be demanded by an increasingly sophisti
cated market cated market. In response to a question concerning the
application of robots to difficult or dirty jobs, such as mining, Mr D. H. Roberts, of GEC,
said that such an application culd not be said that such an application could not be
 to Inmos, the state microcircuit company, is
to be released by the government and will be supplemented by further amounts up to 22% of this amount depending upon where the
production plant is sited in South Wales. Announcing the plans for Inmos at the crucial moment in the debate on the Mrs Thatcher said that the plans pected to create 2,000 new jobs. In addition,
seven
"enterprise" zones will be set up in Sir Keith ong time over the decision because of the aased if everything goes a according to plan, will
and launched early in 1985 or 1986, when the comet makes one of its 76 -yearly appea rances in the night sk. The object of the mission will be to obtain data from instru
ments aboard the satellite on the chemical composition of the "coma" region surround-
ing the nucleus as well as that of the tail. Photographs will be taken of the nucleus and
measurements will also be taken of the comet's magnetic field.
In order to make the checks effective, the
satellite must pass within 1000 km , the satelite must pass within 1000 km of the
nucleus and since only a few hours of observation will be possible, prediction of accurate
orbits is vital to the success of the operation orbits is vital to the success of the operation.
A solid propellant rocket motor will be used A solid propellant rocket motor will be used
to inject the satellite into the comet's orbit to inject the satellite into the comet s, orbit
and data will be transmitted nearly 100
million miles back to Earth.
 .
 I
 r
 I . \}
 \cdots .

Asynchronous seria

data transmitter

Whynchrormation needs to be sent asychronously using a start-stop bit
format, but the application does not format, but the application does not transmitter can provide a simple solution.
When data is available, the Data Ready line goes high, which removes the
reset from the counter reset from the counter and sets the shift
register in the parallel mode. At the next positive going clock edge, the start bit and seven data bits are loaded into the shift register, Q0 goes low, Q1 goes high,

 Pata $-\underbrace{\text { Darity }}_{\text {Start }}$
and IC_{3} reverts to the serial mode. The parity generator output is enabled by Q1, and, on the next clock edge, the parity bit is shifted into the serial input IC_{3}. A further clock edge sets $\mathrm{Q1}$ low, which produces the stop hit hig Therefore, the serial output consists of a start bit, seven data bits, a parity bit and at least one stop bit. A negative going pulse on the Data Dump output indi and the circuit is ready to accept th next byte.
P. M. Gilbert
almesbury
Wilts.

Keyboard'sounder

When using a keyboard it is helpful to has registered. This circuit was de signed for the scientific computer, and gives a bleep through the television loudspeaker.
An input 555 is connected as a
monostable and, when triggered monostable and, when triggered, gives a

$$
50 \mathrm{~ms} \text { pulse. The second timer is con- }
$$

pums pulse.
nected in the astable mode, and gives burst of 2 kHz when enabled by the monostable. The input requires a negative going pulse, which is available from pin 17, M the input, of the Z80. The the v.d.u.
M. A. Wheatley

Maidenhea
Berkshire

Adding capacitance ranges to a multimeter

Capacitance ranges can be c.d. multimeters based on the ICL 710 A 4066 is used to generate a square wav with the same frequency as the displa ackplane drive, and with a pk-to-p reference of the 7106 a second 406 forms a full-wave synchronous rectifier One inverter is required and is formed by an exclusive-OR gate because thre gates are needed to drive the decimal

The circuit uses precision shunt re
sistors and offers good linearity up to about $10 \mu \mathrm{~F}$. Beyond this value the inearity deteriorates rapidly because the capacitor no longer has time t each half cycle

$$
\text { The } 7106 \text { operates on the dual-slope }
$$

$$
\begin{array}{cc}
\text { Mains } & \text { Clock } \\
\text { frequency } & \text { frequency } \\
50 \mathrm{~Hz} & 50 \mathrm{kHz} \\
60 \mathrm{~Hz} & 40 \mathrm{kHz}
\end{array}
$$

Video-line trigge

 An individual video line or group of ines can be displayed on an oscilloscop 555 monostable is triggered by a frame pulse derived from the mixed syncs, and generates a pulse of up to 20 ms . The pulse with the next line sync pulse to prevent display jitter. Current con sumption is typically 30 mAP. Newman and M. Tierney
outhern General Hospital
Glasgow

Efficient c.d.i. system

harge ignition sys converter, Circuit ideas, Nov. 1975. T is biased on by current through R^{2} which causes collector current to pas hrough the primary winding of T winding increases the collector curren nd, at saturation, insufficient base current turns Tr_{1} off. Energy stored in he magnetic field of T_{1} passes throug D_{2} and into C_{1}. This oscillation conficient to switch Tr_{2} on, which then inhibits Tr_{1}.
The discharge circuit uses a conven tional thyristor design. $\mathrm{D}_{3}, \mathrm{C}_{3}$ and lso act as a rev. limiter. Because the nverter has a quiescent ${ }^{\prime}$ current of about 175 mA , it will happily run from two alkaline cells.
W. K. Todd

Essex

Decimal to binary

conversion

If it is necessary or convenient to load circuit provides a cheap method of conversion provided numbers from 0 to 99 are sufficient. The units thumbwheel is an ordinary b.c.d. type, and the tens humbwheel is a decinal output number into the binary adders, which can be c.m.o.s. or t.t.l.
I. H. Math

Alexandria
Dunbartonshire

Transient recorder - 2

Control and timing signals

The logic required for the addres counter is shown in Fig.9. The addres ines A_{1} to A_{8} are set low by the reset the address counts from 0 to enabled C_{33} produces an end signal to mark the end of a single sweep. If the load signal is taken low, the address presented to he external address input appears on A_{1} to A_{8}. Therefore, any memory loca
tion can be addressed by an externa device.
For normal operation the manual/ auto switch is set to the auto position However, if the contents of the memory the manual position is selected. After peration of the reset button, the conents of the first memory location will be displayed on the readout. Operation fhe manual clock-switch advances contents of the next location
The circuit shown in Fig. 10 provide iming signals for the sample, a-to-d
onversion, word storage sequence and clock signal required for the address counter. Clock 1 and clock 2 outputs, ignals at the same frequency as the sampling rate, are produced by th voltage-controlled function generator C_{35}. Five overlapping frequency range are provided and variation within each range is achieved by adjusting a $2 \mathbf{k} \Omega$ to 11. Frequency variation is roughly near with potentiometer variation, and ten-turn potentiometer with a turn counter was used in the prototype. Th etting the turns counter to 1 and set ing the potentiometer to give the cor rect frequency. The upper limit is set by turning the potentiometer to 10 and adjusting R_{5} to give the correct require trimming due to stray capacit ance.

[^1]he oscillator i.c. to prevent modulatio f the main +15 V line by the clock. This additional regulator also improves the stability, of the clock frequency. The regulators to provide four supply rails.

Increasing the memory
a larger memory is required, addition stages must be incorporated in the ddress counter so that the extr memory locations can be addressed. Fo connected to IC_{32}, in the same way a C_{32} is connected to IC_{31}, then 12 bits vill be available which can address up 4096 memory locations. IC_{33} will nee is in the low state only when the las memory location is addressed.
If pairs of 256×4-bit memory block re used to construct an 8 -bit memory the address-input lines, data-input an in parallel. The chip-enable and output disable lines of each pair of memory blocks can then be driven by the out puts of a decoder whose inputs are the stages. The decoding logic ensures that only one pair of memory blocks is activ t a time. An alternative scheme, which is more expensive but reduces the mount of wiring requis 4 -bit memory blocks.

Operation

To operate the transient recorder, selec auto mode and push the reset button For recording, select a suitable input sensitivity and sampling frequency, and operate the arm button. In this state the input is continually sampled and the digital word is displayed by the l.e.ds verter's full range can be observed by adjusting the offset control. With an input signal connected, the recorder is triggered manually or by a 5 V high-to-
low edge at the trigger input. Triggering low edge at the trigger input. Triggering free-running clock, however, it will occur within one sample period and the exact triggering point is identified by a positive edge at the trigger-
acknowledge output. Information stored in the first memory location corresponds to the sample taken immediately before this output. Therefore, although the recorder may not valid from receipt of the trigger signal and in some cases up to a sample period before this.' When all of the memory locations have been filled with data, the recording l.e.d. turns off.
memory on the contents of the repetitive mode and a suitable playback rate, i.e. the sampling frequency. When the analogue output is connected to an oscilloscope, recorded data is displayed plot the data on a chart recorder, operate the reset button, select the
single-sweep mode and a low playback chart recorder.
Operation of the trigger button then produces a single sweep of the memory contents. the recorder is armed unintentio nally the reset button can be used, but memory locatio
contaminated.
Fig 12 shows an input and output Fig. 12 shows an input and output
triangle waveform of the recorder and illustrates the smoothing effect obtained by switching in the low-pass filter. Fig. 13 shows a pressure impulse
received by a microphone from a louds peaker. This excitation pulse was the trigger acknowledge output of th transient recorder
Construction of this design straightforward, but the following pre cautions should be noted. If a metal case is used it should be connected to earth and also to 0 V from the power supply mains-frequency voltages are induced in the chassis, so it is worthwhile to isolate the earth side of the a.c. input
socket from the main chassis and con- nect it to the 0 V rail of the input amplifier. This ensures that voltage induced in the chassis do not appear in series with the input signal. Because
BNC sockets were used on the prototype, it was found more convenient to isolate the front panel. Separate power supply leads, including 0 V , should be used for each board, with connexions made to busbars on the power supply
board. If a hexadecimal display is req uired, suitable l.e.d. types are available such as the TIL 311 which can be driven directly by the data-output lines.

Fig. 12. (a) Input test waveform at 24OHz, (b) output waveform from d-to-a
converter after sampling at 24 kHz , (c) output waveform after filtering.

Fig. 13. Impulse response of a loudspeaker syster
transient recorder.

Designing with microprocessors

4 - The synchronization problem
by D. Zissos and Laurelle Valan. Department of Computer Science, University of Calgary, Canada

This article explains the need to synchronize the internal operation of

 the microprocessor chip with the and hardware methods of doing this are outlined. Their step-by-step implementation will be discussed in later articles.When data is to be transferred between two devices, the transmitting device, before it outputs the data, must ensure that the receiving device is able to
accept it, otherwise the data will be lost. As communicating devices generally operate at different speeds, their operation must be synchronized, if system be avoided. The set of circuits and be avoided. The set of circuits and
signals used for this purpose are referred to collectively as interfaces. The block diagram of an interface involving two devices, a data source and a data acceptor, is shown in Fig. 1. Its function
is to monitor the status signals of the two communicating devices and to generate their command signals in the correct sequence to ensure that they operate in step with each other. In practice an interface accepts external
signals for such purposes as initiating a data transfer, putting the system on alert, and so on.
A clear understanding of the Aynchronization problem and of the available solutions is essential for the
design and implementation of microprocessor-based systems, and indeed of any system. We shall start by first describing the nature of the synchronization problem
The synchronization problem in microprocessor-based systems is probably best illustrated by considering the steps involved in using a character printer to produce a hard copy of a
block of 32 characters stored as bytes in consecutive locations in memory. A simplified block diagram showing the flow of information through a microprocessor chip is shown in Fig. 2 (a). The routing of the data through the microit directly to the printer, allows such functions as code conversion, formatting, parity checking and so on, to be performed on the data prior to printing. (d.m.a. link) between memory and
printer may be established, as we shal discuss in a future article.
The operation of our system, which memory into the microprocessor chip and printing it, is shown in Fig. 2(b). The flowchart of the software required to fetch and print each byte is shown in Fig. 3. Its implementation in the case of Appendix), is shown overleaf.
Reference to the manufacturer's manual (1)* indicates that the execu-

*See also Appendix

tion time of a fetch/print loop (state ments in locations 0005 to 000 F) requires 24 machine cycles. If we assume the execution time of a machine cycle to be around $1 \mu \mathrm{~s}$, the characters
will be output to the printer at the rate of around 40,000 per second - far too fast for character printers, which typically will be operating at 30 characters per second. The outputting of
data to the printer faster than it can data to the printer faster than it can
accept it will clearly result in a large proportion of it getting lost. It is therefore necessary for the designer not to output a character to the printer until it is ready to accept it. The most straight-

Fig. 1. Block diagram of an interface

Fig. 2. Block diagrams showing (a) data flow and (b) fetch/print cycle print cycle in Fig. 4. This delay can be
implemented using either software or hardware; in the first case we shall refer to it as software wait and in the second case as hardware wait.

Software wait is implemented by means of a programming loop during which the status of the printer is read into the printer is found to be busy, the process is repeated. When the printer becomes ready (indicated by its status signals), the microprocessor exits the software
wait loop, as shown in Fig. 5 . Note that the wait loop may be entered eithe before or after the print operation.
The step-by-step implementation of microprocessor-based systems using software wa
next article.

ig. 3. Flowchart for printing a block of n characters

4 Stretched fetchiprit ar

Fig. 5. Flowcharts of software wait foops (a) with wait loop entered before print operation, (b) entered after print operation.

Fig. 6. Flowcharts of hardware wait loops implemented
(a) before and (b) after print operations.

Hardware wait is implemented by causing the microprocessor chip to enter into idling state, during which all
the microprocessor activities are suspended without turning off the clock. As in the case of the software wait, the hardware wait may be implemented either before or after the print operation - see Fig. 6. wait state. The microprocessor may
remain in a wait state indefinitely. The wait state is entered by pulling
specified pin on an m.p.u. high or low.

Examples. Pulling pin 23 low puts the Intel 8080 in the wait state, and pulling it high brings it out of the wait state - see Fig. 3 in article 1. wait state is entered at the end of the current instruction by pulling pin 2 low.
ulling pin 2 high brings it out of the wait state. The Intel 8085 uses
the same way as pin 23 is used in the case of the Intel 8080.
"M6800 Microprocessor System De sign Data," Motorola 1976.
Design and implementation of test and-skip systems will be the subject of the next article.

Development of a satellite terminal

Experimental system for tv reception

by S. J. Birkill

specialized reception techniques, but just a suitable antenna, low noise wideband $f m$ decmodulator. The SITE broadcasts ended in August 1976, and ATS-6 was manoeuvred westward to a new geostationary location over the Pacific Ocean, out of sight of the UK, for
further experiments with further experiments with US terminals,
Since I had been inspired by the ATS results, I was now eager to receive more satellite tv broadcasts. The USSR had a system known as Orbita which used Molniya satellites in 63° inclined orbits,
but information was sparse. The but information was sparse. The
Molniya-1 series used frequencies around 1000 MHz , and the locus of pos-

Fig. 1. Sheffield terminal's 8ft dish antenna with 4 GHz feed in position. Fig. 2. 4 GHz head unit. The GaAs f.e.t. stage is mounted near the top. Fig. 3. $111-12 \mathrm{GHz}$
feed system mounted at the prime focus point.

Table above is continuation
of the Appendix.
sible apogees (Molniyas were activated for a six-hour period around apogee when their orbital characteristics made northern sky) arced northwards to eas and west of a point almost overhead Signals were received, but they carried f.s.k. data at a low bit-rate. It appeared that the Orbita tv service had been
transferred to the Molniya-2 and -3 series, with downlinks in the 4 GH band. At around this time there was news of Russian tv broadcasting tests from one of their first geostationary e.i.r.p. was quoted as 56.5 dBW at e.i.r.p. was quoted as 56.5 dBW at
714 MHz , but the satellite's longitude of 99° E put it well below the eastern horizon.
It became clear that the best results
would be a would be achieved in the microwave
part of the spectrum and that 3.7 to

Fig. 4. India's instructional tv experiment received in 1975 from ATS-6 at 860 MHz . Carrier/ noise density is about $70 \mathrm{~dB}(\mathrm{Hzz})$. Fig. 5. RTVE, received 1977. Relay to Canary Islands via Inte/sat half-transponder, hemispheric beam. Frequency 3916 Which
ei.r.p. $20-25$ dBW, c/n density $65 d B$ (Hz). Fig. 6. Sudan, received 1978. Internal distribution via leased half-transponder. Global beam, ei.r.p. about $20 d B W, c / 1$ density $65 d B(H z)$. Fig. 7. Molmiya-3 satellite serving Orbita system with Soviet Central tv. Orbita uses an analogue width-modulated audio pulse in ine blanking, and 7..5W .
4.2 GHz should be explored. The 5 ft
mesh dish used for ATS- -6 was discarded, and I obtained a surplus 8 ft solid-surface paraboloid, originally used for terrestrial radio links in the 7 GHz region. To resolve pictures from the system noise temperature of better than $400^{\circ} \mathrm{K}$ was required. The dish was fitted with a circular polarisation antenna feed, made from a piece of 2 in. copper pipe, carrying the downconverter, a
low-noise amplifier constructed from two HXTR-6101 devices on a microstrip, and 25 dB of wideband u.h.f. i.f. amplification. The amplifier was included so that signals could be carried
50 ft to the house without significant 50 ft to the house without significant
breakthrough of local u.h.f. tv broadcast stations. The second converter was installed in the house together with the remainder of the receiver. A modified Varicap u.h.f. te tuner was used, as for ATS-6, but with facilities for re-
inserting syncs.. phase-locked to the output of an independently-tuned narrow-band sync. pulse demodulator. The receiver was aimed at the sun and aligned for maximum solar noise. A
figure of 5.5 dB above clear sky was figure of 5.5 dB above clear sky was
achieved on the first day which, with an
assumed value for solar noise flux of 8 $\times 10^{-22} \mathrm{~W} / \mathrm{m}^{2} / \mathrm{Hz}$, translated to a G / T overall receiver noise figure of about 3.5 dB , which was later confirmed by comparing ground noise with sky noise.
When the antenna beam was lowered onto the geostationary orbit arc, my efforts were rewarded by the appearance of RTVE's (Spain) first chain programme via the leased half-transponder 6 of the new Intelsat-IVA (F2) at
$29.5^{\circ} \mathrm{W}$. This Canary Islands relay is at present carried on the Major Path 1 Intelsat at $34.5^{\circ} \mathrm{W}$.
Since receiving RTVE, many other 4 GHz satellite tv downlinks have been
observed. In addition to carrying the observed. In addition to carrying the
world news and sports events, many nations lease capacity on the Itelsat system for their own use, such as internal tv distribution from studio centres to transmitters, and ty relay to their
overseas territories. Because Intelsat's overseas territories. Because Intelsat's
constitution precludes broadcasting activities, reception of their transmissions by private terminals can only be made for experimental purposes to prove equipment performance. How-
ever, a rather different situation exists in the USA where a private terminal
boom is taking place. Home use of the common carrier traffic on domestic communications satellites is permitted, provided the programme supplier's permission is obtained. For about $3000 \$$ a
person can purchase the principal eleperson can purchase the principal ele-
ments of a $10 f t$ satellite terminal, and have access to around 36 full-time tv channels without the video and colour distortions which occur on long distance terrestrial distribution
During the last three years
Union has begun to establish InterSputnik, a rival system to Intelsat, with 4 GHz downlink satellites in geostationary orbit over the three main
ocean regions. To date, two types of ocean regions. To date, two types of
satellite have been launched. The Raduga (Rainbow) class, which carry a single tv channel and appear to be similar to the Molniya-3 type, and the Gorizont (Horizon) class with 5 or 6 tv
channels in the 3650 to 4000 MHz range. Channels in the 3650 to 4000 MHz range. sionar numbers so the $14^{\circ} \mathrm{W}$ Atlantic slot for instance, called Statsionar-4, is currently occupied by spacecraft Gorizont-2. Two channels on this satel-
lite use higher power or spot beams and lite use higher power or spot beams and
radiate almost 10 dB (in this direction) above the standard USSR 4 GHz e.i.r.p.

WIRELESS WORLD, SEPTEMBER 1980

of about 29 dBW . Statsionar- 4 is the most powerful satellite at this frequency, and can be received even with an indoor antenna.
As the accompanying photographs show, results have been improved since the early tests, due partly to the use of a
Plessey gallium arsenide f.e.t., type $G A T$ Plessey gallium arsenide f.e.t., type GAT,
5 , which reduced the 4 GHz system noise temperature to $185^{\circ} \mathrm{K}$, a 3 dB improvement in sensitivity.
Results have been further improved by the addition of another GaAs f.e.t.
stage, a HFET-2202 device from Hewlett stage, a HFET-2202 device from Hewlett f.e.t has a noise figure only slightly above 1 dB , and should produce a receiver noise temperature close to
$100^{\circ} \mathrm{K}$.

Fig. 8. Intersputnik. Coverage of non-aligned nations summit in Havana, received September 1979, Statsionar-4
channel $5,3875 \mathrm{MHz}$, e.i.r.p. about $29 d B W, c / n$ density $75 d B(H z)$. Fig. 9. Soviet tv received November
1979. News and information proera " V remy", Sta information programm 3675 MHz , e.i.r.p. about $37 d B W$, channe density $83 \mathrm{~dB}(\mathrm{~Hz})$, SECAM colour. Fig. 10. Italian tv via USSR satellite, received 1980. RAI feed via Eurovision Brussels, converted to SECAM in Moscow and transmitted to Intersputnik
over Statsionar-4, channel 5 at around $29 d B W$ e.i.r.p. Frequency 3875 MHz , c/n density about $78 \mathrm{~dB}(\mathrm{~Hz})$.
Fig. 11 French Fig. 11. French tv on 11.64 GHz
received February 1979 .TDF- 2 via OTS,
e.i.r.p. about $45 d B W, c / n$ density about Fig. 12. Via Sirio received January 1980 talian tv on 11525 GHz , irp. estimated at $28 d B W, ~ c / n$ density about $65 d B(H z)$.
Fig. 13. Video display switched to spectrum analyzer mode to show a
portion of the $3.7-42 \mathrm{GHz}$ band whit receiving a to transmission from a Molniya (Lightning).spacecraft on 3895 MHz. Level increases from left to right, graticule lines are at 10 dB intervals. Frequency increases from top to bottom
cursor line is set to 3915 MHz . Carrier plus noise / noise ratio of this transmission was 15dB in the analyzer's noise bandwidth.

With the launch of the European Space Agency's OTS satellite in May tv frequency band of a new satellite sub-bands in this region were destined to ease the congestion experienced by international and domestic systems in the 4 GHz band, and provide the new regional (ECS) system for Europe as well as the allocations already made at
WARC- 77 for satellite tv broadcast downlinks. A new head unit was built around the feed horn, which was made capable of handling either linear (plane) or circular polarisation. The downconverter comprises a single unbalanced
diode mixer in stripline, with a Gunn device in a coaxial cavity as the local oscillator. To improve performance, GaAs f.e.t. stages in microstrip construction were subsequently added.
Mid-band noise temperature of the 11 . 12 GHz system is around $400^{\circ} \mathrm{K}$ and, with an antenna gain of around 47 dBi , his gives a G / T of $21 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$ (clear sky) ompared with the $4 \mathrm{~dB} /{ }^{\circ} \mathrm{K}$ being assumed for future direct-broadcas u.h.f. tunable i.f. is used as for 4 GHz , which enables a 500 MHz portion of the $11-12 \mathrm{GHz}$ band to be tuned for any setting of the Gunn source. High quality on the wide-deviation 120 MHz wide spot-beam channels and on the standard-deviation 40 MHz "Euro beam" transponders. Television from various European broadcasters has carried in digital "sound-in-syncs. carried in digital "sound-in-syncs." dule is a mystery, with long periods devoted to colour bars.
The Italian experimental satellite sirio, also on $11-12 \mathrm{GHz}$, has provided t t signals but, with an e.i.r.p. of only
28.5 dBW
compared with 37 to 45 dBW for OTS, pictures are rather noisy a hown in Fig. 12.
The carrier/noise density figures in carrie carrier-to-noise ratio because the f.m demodulator is a variable-bandwidth p.l.1. which can be narrowed at low c / n densities to optimise the trade-off be-
tween noise and video distortion over the picture portion of the video modulated signals. So, for a strong signal with a c / n density of $84 \mathrm{~dB}(\mathrm{~Hz})$, the noise bandwidth can be 25 MHz and the signal may still exceed the f.m.
threshold of about $10 \mathrm{~dB} \mathrm{c} / \mathrm{n}$ ratio. But, with a signal of only $65 \mathrm{~dB}(\mathrm{~Hz}) \mathrm{c} / \mathrm{n}$ density, reducing the bandwidth to 1 MHz would only recover a $5 \mathrm{~dB} \mathrm{c} / \mathrm{n}$ ratio. Therefore, bandwidth must be se to achieve the greatest possible c/n
ratio over most of the deviation occupied by the I.f. luminance components of the pre-emphasised signal, perhaps 4 MHz , which results in a picture similar to Fig. 12. The receiver can
be switched to a 70 dB logarithmic spectrum analyzer display, which is very useful when aligning to a satellite or
Iooking for new signals. Fig. 13 shows
part of the 4 GHz band between 3.85 and lite was whine a Russian Molniya satellite was being received. The lever reads top to bottom of the screen.
Later this year the first Intelsat V should be launched for operation over the Atlantic with 4 and $11 G H z$ downlink transponders. The first Soviet "Loutch" Both satellites will have high e.i.r.ps to allow for periods of high attenuation, caused by atmospheric water vapour in the downlink path, and should be eas to receive in clear weather. Within three or four years Europe may have directev
broadcasting satellites, and the development of comparatively low-cost terminals for home use will take place. Plessey and Mullard (Philips) are already working on monolithic low noise downconverters on gallum have 12 GHz home terminals for the market following extensive tests with the Japanese "Broadcasting Satellite for Experimental Purposes". It is antisatellites will operate with an e.i.r.p. 15° be directed at the UK.

Bibliography

Television from India, Wireless World March 1976, pp 68-70. ATS-F data book, NASA, Goddard Space Flight Center, May 1974 .
OTS data book, ESA, ESTC Noordwijk, OTS data bo
March 1975 .
Lewis, Golding \& Kernot, The OTS Tes Lewis, Golding \& Kernot, The OTS Tes
Programme, BIS Vol. 32, 1979, pp 173-179. Fanti \& Tirro, The Italian Sirio Experimen Satellite and Ground Equipment, AIAA, April
1970 . Schultze, Dicks \& Itohara, Use of the Intelsat Space Segment for Domestic Systems, AIAA April 1976 . Birkill, Russi's US-Viewable Birds, Coop's Satellite Digest, Feb 1980, pp 2-1
Box G, Arcadia, OK 73007, USA).
Geostationäre Nachrichtens . 11 UdSSR, Mikrowellen, Feb 1978, pp 131-133. BA Technical Review No. 11, Satellites for
Broadcasting, July 1978 . Broadcasting, July 1978 . Receivers Clash over Huge Home TVRO pp 84-118.

IN OUR NEXT ISSUE

Acoustically small loudspeaker

o reduce colouration and cabinet resonances, the mid-range and high-frequency drivers of this active crossover design are mounted in an oblate cylinder, made of modelling clay. The enclosures are operated elow lowest resonance, and the unusual shape gives an exceptionally 'solid' stereo image

Floppy disc store

 Because most home computers use audio cassettes for storinginformation, the location and transfer of data is very slow. Our floppy disc system comprises a controller and an 8 in drive, which can store
400 K bytes and transfer data at 500 bytes per second. The disc store 400 K bytes and transfer data at 5 for the Wireless World scientific computer, but can be adapted for other systems bases on the Z 80 .

Frequency meter for radio receivers

A versatile digl frequency meter, usable from low frequencies to v.h. A versatile digital frequency meter, usable from low frequencies to v.h with a pre-scaler, and primarily Hoed has avoided the large-scale chips
identify stations. John Linsley Hood and, with the aim of achieving a more flexible design, has used c.m.o.s logic, together with low-power Schottky elements.

NEW R.F. MILLIVOLTMETER

The TM8 is a new autoranging analogue true r.m.s. millivoltmeter with a specified operating range of 30 kHz to GHz and useful indications up to 1.5 GHz . It measures r.f. voltage from 1 mV to 3 V (or 300 V using the $100: 1$ precision divider) and also has a logarithmic range which spans four decades-useful in setting-up tuned circuits.

Careful consideration of the circuit design resulted in the use of CMOS low power IC's thus the whole unit only uses five watts of power and has minimal temperature drift as well as high reliability
The meter is provided with damping so that fast changes in amplitude of the signal can be filtered out without either registering on the meter or on the pen recorder output This output socket gives a 0 to 1V output for zero to full scale reading on the meter

Like most Farnell r.f. test gear, the TM8 is b.c.d.
programmable and will soon be 'busable' using the Farnell Omnibus IEEE488 interface. A final touch of refinement to the design is the 'hold-reading' switch on the probe which will, as its name suggests, hold the reading that appears in the meter to within 1% for at least 3 minutes.
The TM8 is supplied complete with probe (integral with input lead) probe to b.n.c. adapter, 'T' connector and 100:1 high impedance divider.

Leaflet available.

On sale 17 September

carour ITMDS0iM1 1 EIM $=1 / 50$
The pocket Digital Multimeter by which

others are judged.
 grous
 And generous discounts start at

 10 units; 5%Everything about the 130 is right. Easy to operate, large clear read-out. Compact, robust and reliable. With a specification few can equal in machines costing twice the price
Only one calibration adjustment.
One year guarantee on spec.
25 ranges and five functions:
ohms, DC and AC volts and amps.
10 amp range.
$100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.1 \Omega$ sensitivity.
20,000 hour M.T.B.F
All this is backed by the immense knowhow of a specialist company with an enviable reputation for test equipmen spanning almost all requirements from $31 / 2$ to $51 / 2$ digits.
Simple. Just send off the coupon enclosing cheque or postal order. And see for yourself how the 130 measures

The Keithley 130 - the D.M.M. that

Graphical communication with microcomputers - 2

Character generation and graphics
by I. H. Witten, M.A., M.Sc., Ph.D., M.I.E.E. Department of Electrical Engineering Science, University of Essex

Dr Witten continues his article on interacting with a microcomputer This final part goes on with the discussion of raster-scanned displays, finishing with a look at the
and tablet method of input.

Cell-organized displays. To make a display system easily manageable by the programs that generate the pictures, it is necessary to impose a structure on be compressed and stored. For example, we saw earlier how line-generating hardware in a point-plotting display processor permits a whole line to be specified by its two end points. The scanned display is a pattern of rectangular cells. Figure 15 shows a $256 \times$ 256 bit-per-point screen, organized as a 32×32 array of cells, each one being 8
$\times 8$ dots. There are 4 bits in so 2^{264} possible patterns can occupy one cell alone. However, most of these patterns are unlikely to be used in a simple picture. Suppose we sacrifice
flexibility for convenience and low cost flexibility for convenience and low cost
by defining a small repertoire - say 256 by defining a small repertoire - say 256

- of patterns which may occupy each cell. Then to hold the complete set of patterns we need $256 \times 8 \times 8$ bits -2 Kbytes, and now a particular pattern can be indicated by an 8 -bit pattern number. Since there are 32×32 cells on
the screen, only 1024 of these numbers, or 1 Kbyte, are needed to hold the screen contents.
This certainly saves some storage. Previously, 8 Kbytes were needed to point basis. Now only 1 Kbyte specifies the screen contents, together with 2 kbytes for the pattern dictionary. The price paid is heavy, though: only a tiny fraction of possible pictures can be
displayed. (You may care to verify that the fraction is $1 / 2^{224}$, which is small indeed!) But the real advantage is one of convenience: now the computer need only wrestle with a 32×32 array of cells instead of a 256×256 array of dots. terms of bytes and not bits anyway, it is actually easier to handle cell pattern numbers than individual dots. (Recall the difficulty of generating straight Figure 17 shows the connexi memory-mapped, cell-organized dis-

g. 20. Connecting a v.d.u. to the bus with any one character occupying
either the upper or the lower 7×5 section; this works because there aren't any characters with both descenders and "risers". Higher-quality text can be
obtained with an 11×7 matrix with obtained with an 11×7 matrix, with
any given character occupying either any given character occupying either
the upper or the lower 9×7 section. The possibilities are summarized in Fig. 19 , where a dotted outline shows the cell containing the character, including inter-character and inter-line space, and
the solid line shows the actual size of the characters.
Read-only memory chips with the character patterns already in them are turers. When addressed code of a character, the appropriate dot pattern appears on the output pins. The address of a particular row of dots is usually provided to the character that row anpear at the output. Thus with 64 characters of 7×5 dots each, 9 bits are required to address a particular output pins giving the dots in that row. This arrangement is especially suited to raster-scan displays, because one line of the raster is generated at a time. In some "lowering" characters with descenders must be done externally to the chip, the user providing circuitry to detect these five characters and adjust the row address accordingly. The amount of storage required in a character generaneed 512 words of 5 bits to provide the 64-character upper-case alphabet
A 256×256 screen accommodates 32 lines of 32 characters if the character cell is $8 \times 8,21$ lines of 42 characters if it is 12×6, and only 17 lines of 28 cha are unrealistically small for text. A normal sheet of typed paper can comfortably hold about 57 lines of 80 char acters. To achieve this with a 12×6
cell would require a 684×480 screen cell would require a 684×480 screen
which is not possible within the British 625 -line standard. Many v.d.us compro mise with about 24 full-length lines of 80 characters, requiring a 288×480 screen. There is currently a great deal o v.d.us, and special high-resolution screens are built for them, but they don't have the advantage of the mass $t v$ market to bring down the price. However, it is worth noting that a 1125 -line
high-resolution tv system is under de velopment in Japan, which should accommodate up to 75 lines of high quality text, with a 11×7 character size (15×9 cell).

The v.d.u. V.d.us are not, in general memory-mapped. It is far more convenient for the computer user to regard his text as a linear string, sending it one character at a time to the display device. by a parallel-to-serial converter

WIRELESS WORLD SEPTEMBER 1980
attached to the bus, as shown in Fig. 20. screen contents, but this only needs one byte per character displayed - say 2 Kbytes for 24 lines by 80 characters. In fact, local storage is sometimes pro vided for a good deal more than this, so that the v.d.u. can retain several
screenfuls of text and you can look back to see what was presented a few mo ments ago.
The v.d.u. itself has to decide what to do when the screen fills up. A scrolling where the entire screen contents move up as necessary. Continual rapid jumping of the text is irritating and tiring for the reader, and so several lines are scrolled at a time. Smooth scrolling where the contents move up a dot at a
time rather than jumping whole lines is unfortunately rather rare at present, although it does not cause any particular technical problems. Other features the text on a selected are blinking of reverse video (black text on a white background), half-intensity or doubleintensity display, and underlining of parts of the text. These options are switched on and off by control cha-
racters (ASCII codes $0000000-0011111$) and sent down the line as part of the text, which can unfortunately alter all subsequent characters if a text cha racter is corrupted by noise into a con trol character!
to move the current feature is the ability any point on the screen, so that characters in the middle of the text can be overwritten. A mark called the "cursor" is usually made on the screen at the
current writing position, and any input typed on the keyboard appears at the cursor position (which is moved along with each successive character). Then a questionnaire can be displayed and the user enters his answers, where straining him to write in the space provided. Cursor control is again dictated by a special character which signals the v...u. to interpret the next that this reinstates the flexibility of a memory-mapped display where a character can be placed at any position on the screen
Most v.d.us operate at speeds up to
9600 baud Unlike print 9600 baud. Unlike printers, no extra
effort is needed to make a v.d.u. go fast. 9600 baud allows a full screen of 24×80 characters to be sent in 2 seconds, which is certainly a high reading rate! However, people often scan text much
faster than this - how quickly do you read a newspaper? Present v d.u technology leaves plenty of room for improvement
Limited graphics
Pressure to provide limited graphics facilities based on inexpensive rasterscanned displays has come from two

Fig. 22. Teletext graphics.
$\times 8$ dots, with a 9×5 upper-and-lower-case character matrix. The prob lem of dividing a cell 10 rows high into three equal portions for the graphic
symbols is a continuing challenge for teletext receiver designers! Teletext also has a defined protocol for coping with colour displays by inserting colour-change control characters into
the text stream.

User-defined graphics. An unusual and interesting limited graphics facility is provided in the Sorcerer home computer. 256 character codes are used 128 correspond to pre-defined intterns, which include the 96 -character basic alphabet of Fig. 18 together with 32 extra graphics. For the others, the character-generating memory can be
altered by the processor, so that the user can define his own graphic symbols. Since the character matrix is 8×8, 8 bytes serve to define one character,

76

Fig. 23. Operation of a light-pen
and the read-only and writeable parts of the character generator are each kbyte. The circuitry required to enerate characters from a read/write for read-only memories, because than tention will occur when the display reads and the processor writes simultaneously. But the extra power provided is enormous, for the Sorcerer can simu
late both PET and the teletext system as well as others. For example, graph can be displayed quite accurately by defining eight patterns each with one dot in the centre, at different heights. O a character set can be defined for line
drawings which includes all the line segments which are needed in a parti cular picture. Or a Cyrillic alphabet for text in Russian. This combines much o the flexibility of the memory-mapped that can show text sensibly and simulate systems like PET and teletext.

The light-pen and tablet
Turning now to graphical input, a whether or not there is a spot of light on the screen at the place it is pointing. It can also signal the exact time the light appears. Recall that the picture is
refreshed every 40 msec or so so that if the pen points at a spot which is bright ened up a signal will appear during every refresh cycle. The interrupt mechanism is ideally suited to advising the processor at the time a hit occurs. The time-of-hit information provided
naturally by a light-pen can easily be converted into the position of the hit by adding the hardware shown by dashed lines in Fig. 23. The x and y signals from the output port are routed back to an input port - in practice, this will be analogue form - and loaded into two registers there whenever a hit occurs Then the processor can examine these registers at leisure to ascertain the position of the last hit.

But which kind of information, time of-hit or coordinates-of-point, is more Fig. 24 is stored as 28 lines:

Fig. 24. A house. Timing or coordinates? and line-generating hardware drives the isplay. Then, although the x, y coor dinates of a hit can in theory be used to determine which line was being drawn the precise time when it occurred lead to the information much more easily because the processor only needs to generator. In general, the state of the display processor at the time of the hit will provide most information about what was actually being drawn at th
time, not the coordinates of the hit.
Tracking a light-pen. A light-pen only registers a hit if the spot it is pointing a refresh cycle. If you point it at a blank part of the screen the processor cannot

25. Tracking cross
tell where it is. A "tracking cross" i. follows the pen around in an attempt this provide light for it to see. For the cross of Fig. 25, if a hit occurs on line 1 the cross should move up, for line 2 it should move to the left, and so on. The processor detects the hits and moves the cross
as necessary If the centre of the cross coincides with part of the picture, then a hit is registered whenever that component of the picture is refreshed, and so the processor can tell what part is being indicated.

Touch-tablet. Figure 26 illustrates an other kind of graphical input device which is entirely independent of any
display and provides the coordinates of the pen position
Current is injected into a uniform resistive sheet through the pen tip, and is measured at one side of the tablet while the other is earthed. The resistive
sheet acts as a potential divider, and the ratio of the output to the input current gives one coordinate. Then the connex ions are changed so that the other coordinate can be measured
A particularly interesting feature of pen, using high-frequency alternatin pen, using high-frequency alternating the sheet instead of d.c. with direct coupling. Effectively, you sit on an
electric chair and inject current with your finger. Then, no pen is needed and if the sheet is made transparent and fitted on to a display screen, you can indicate parts of the picture just by pointing at them with a finger

Fig. 26. An x,y tablet.
This device provides coordinate formation and not time-of-hit. How ever, it can easily be made into time-ofrom comparing the x, y coordinates rom the tablet with those being sent to he display. When they coincide (to terrupt is caused.

Further reading

Nelson, T. H. (1974) Dream machines - new distributors, 702 S . Michigater screens. The istributors, 702 Newman, W. M. and Sproull, R. F. (1979)
Principles Principles of interactive computer graphic Stokes, A. V. (1978) Viewdata: a public in formation utility. London: Input Two-Nine. Walker, B. S., Gurd, J. R. and Drawneek, E. A.
(1975)
Interactive
computer (1975) Interacti
Edward Arnold.
Winst

Winston, P. H. (1975) The psychology of
computer vision. McGraw Hill

Simple active filters for equalizers

Simple design rules allow
 construction of filters having any and gain, using simulated inductors. Examples illustrate provision of a symmetrical bandpass to band-stop characteristic, varied with a single control.

The majority of designs published as ctave or graphic equalizers feature number of independently controllable filters allowing boost or cut of specific These designs fall into two main cate-

RC bandpass/bandstop filters. ypical system may have a number active filters either enclosed in 9,10 , or having their outputs fed to differential amplifier, Fig. 2 and ref. 8 Problems arise from both these con figurations. In Fig. 1 noise generated he output amplifier the signalle-nois ratio decreasing as the number of filt sections is increased. This problem avoided in Fig. 2, but the component values must be carefully calculated to teristic Many designs anst charac published giving only bandpass (pr sence) or bandstop (notch) characteris tics. ${ }^{2}$
Series LCR filters. This arrangement Fig. 3, suffers from the disadvantage ductors, i.e. size, cost, distortion, refs 3, 4. The present design overcomes this by synthesizing ${ }^{5}$ the necessary induc tors, using the circuit of Fig. 4.
To duplicate the impedance versus
frequency characteristic of an inductor, the input impedance of the circuit mus be of the form $R+\mathrm{j} \omega L$, and it can be seen in the Appendix that the circuit has an input impedance of $R_{1}+R_{2}+\mathrm{j} \omega C R_{1} R_{2}$.
Although many other methoids of simulating inductance have been published (e.g. search under Gyrators) they have suffered from greater com plexity or lower performance, ofte both.
4 to give a series LCR circuit, Fig. which may be used in the circuit of Fi 3 to realise the same function, though the parameters of the inductor are now
easily controlled.

Fig. 1. With active filter enclosed in feedback loop, s / n ratio decreases a number of sections increases.

Fig. 2. Alternative circuit using
differential amplifier avoids noise problem but component values as critical.

Fig. 3. Simple LCR network introduced paths by potentiometers.

fig. 4. Two-terminal RC network
simulates inductance, value $L=C R, R$

Fig. 5. Series capacitor C_{x} tunes

Design procedure
Making use of the standard formulae for series toned circuit

$$
\begin{aligned}
f_{\mathrm{o}} & =\frac{1}{2 \pi \sqrt{ } C_{\mathrm{x}} L} \\
\text { and } Q & =\frac{1}{r} \sqrt{\frac{L}{C_{\mathrm{x}}}}
\end{aligned}
$$

where the symbols have their usual significance, and r is the equivalent series resistance. Eliminate L thus

$$
L=C_{x} r^{2} Q^{2}
$$

and . $\quad \mathrm{C}_{\mathrm{x}}=\frac{1}{\left(2 \pi f_{0}\right)^{2} L}$

$$
C_{x}=\frac{1}{2 \pi f_{0} r Q}
$$

Also, $\quad L=C_{x} r^{2} Q^{2}=C R_{1} R_{2}$

$$
C=\frac{C_{x} r^{2} Q^{2}}{R_{1} R_{2}}
$$

Fig. 3 shows that maximum or minimum gain at f_{0} is

$$
20 \log \left(\frac{R+r}{r}\right) \mathrm{dB}
$$

Armed with these equations, filter design becomes a matter of setting the design parameters, taking account of any required component values, and values.
Fig. 6 she notch filter, depth of null variable $Q=50$ (say). Synthesized inductance has a value of $\sim 1400 \mathrm{H}$. To enable frequency to be trimmed to off-set the effect of component tolerances, R_{1} and R_{2} incorporate a potentiometer. R_{1} and the notch depth are independently

The value of the potentiometer used as the cut/boost control is non-critical, varying only the control law. The buffer amplifier used in Fig. 4 can be an emitte follower depending on the load to be driven (the values of $\mathrm{C}, \mathrm{R}_{1}, \mathrm{R}_{2}$) and the performance required. Signal-to-noise
ratio and distortion level for the system atio and distortion level for the system

Fig. 6. 50 Hz notch filter can be trimmed Fig. 6. 50 Hz notch filter can be trimmed
with lower potentiometer. 10 k resistor modifies characteristic to attenuation only.
amplifier used; for most purposes the 741 is sufficient, though increased per formance may be achieved with a more pecialized amplifier 6,7
have varied (in frequency) from I.f. variable filters for electrophysiological research, to a fine-section tone control for audio systems. Although developed for use at audio and sub-audio frequen-
cies, high frequency operation is de pendent only upon the characteristics of the amplifiers used. However, as the frequency of operation is increased, the value and size of a discrete inducto

References

1. Emmett, J. R. Multi-channel tone con-
trol, Wireless World, Sept. 1973, p. $457-9$ trol, Wireless World, Sept. 1973, p. 457-9, Levesley, P. Designing a studio mixer,
Studio Sound Nov 1971 p 583 Studio Sound, Nov. 1971, p. 583. . Williamson, R. Octave equalizer, Hi-F News, Aug. 1973, p. 1484 .
Robinson, D. High quality mixer, Studio
Sound, Feb. 1971, p. 79.
World, July 1975, p. 307-11.
2. Meyer, D. Audio pre-amplifier using op-amp techniques, Wireless World, July
1972, p. 309.12, correction p. 544 Nov. Oldfield, M. L. G. Letters, Wireles
3. Thomas M. Tunable audio equalizer,
Wireless Worla, Sept. . 9778, pp. $58-63$,
correction p. 91 October. correction p. 91 October.
Walker, C. $\&$ Clinch
4. Walker, C. \& Clinch, W. Multisection
tone equalizer, Wireless World, Jun 1980, pp. 43-6. Audio Handbook, National Semiconductor, 1976. Dave Protheroe was an electronics
technician in the psychology departtechnician in the psychology depart-
ment of the City of London Polytechnic, where he constructed prototypes of this filter. Since then he has graduated in electrical engineering
and is now lecturing in electronics at Thames Polytechnic. Researching into digital systems design, recent work has centred around applications of digital devices, especially the hardware and sottware design of
Z80-based microcomputer system.

Practical designs
8-14Hz three-section filter
Application: vibration analysis, elec tromedical recording. Design criteria: con-
stant bandwidth, control range +20 dB stant bandwidth, control range $\pm 20 \mathrm{~dB}$
Values of $R, R, R 2$ were chosen to give the Values of R_{1}, R_{R}, R_{2} were chosen to give the
required control range. Q value was then
calculated from $Q==_{\text {, ba }}$, bandwidth. The calculated from $Q=f_{\text {, }}$, bandwidth. The
underlined equations give the required underlined equations give the required
capacitor values, and the last equation gave capacitor values
the value of R.

$50 \mathrm{~Hz}-2.8 \mathrm{kHz}$ five-section equalizer Application: supplement to audio tone con-
trols. Constant-Q characteristic is required to keep tonal effect of filters constant over the frequency range. In the interests of higher
s / n ratio a more complex differential

Appendix

A voltage $V_{\text {n }}$ is applied to the input terminal
of Fig. 4 . Then

$$
r_{1}=v_{\text {in }}-v
$$

amplifier was used. ${ }^{7}$ To avoid slew-rate limiting at high frequencies use faster op-
amps e.g. 748, 741S, 531 . Control range: $\pm 12 \mathrm{~dB}$, consistent with commercial units. \pm Component values chosen as above.

f	Q	C_{x}	C	$\mathrm{R}_{1}, \mathrm{R}_{2}$	R
50	1	1μ	4.2μ	1.5 k	10 k
200	1	0.27μ	1μ	1.5 k	10 k
800	1	68 n	0.27μ	1.5 k	10 k
3.2 k	1	16.8 n	68 n	1.5 k	10 k
12.8 k	1	4 n	16.8 n	1.5 k	10 k

$$
i=\frac{V_{\text {in }}}{R_{1}}\left(1-\frac{R_{2}\left(1+j \omega C R_{1}\right)}{R_{2}\left(1+j \omega C R_{1}\right)+R_{1}}\right)
$$

$$
\text { where } v=V_{\text {in }}\left(\frac{R_{2}}{R_{2}+\frac{R_{1}}{1+j \omega C R_{1}}}\right)
$$

or $i=\frac{V_{\text {in }}}{R_{1}}\left|1-\frac{R_{2}+\mathrm{j} \omega C R_{1} R_{2}}{R_{1}+R_{2}+j \omega C R_{1} R_{2}}\right|$
$z=\frac{V_{\text {in }}}{i}=\frac{R_{1}}{1-\frac{R_{2}+j \omega C R_{1} R_{2}}{R_{1}+R_{2}+j \omega C R_{1} R_{2}}}$

$$
V_{1}=V_{\mathrm{in}}: 1-\frac{R_{2}}{R_{2}+\frac{R_{1}}{1+\mathrm{\omega} C R_{1}}}
$$

$=R_{1}\left(R_{1}+R_{2}+\mathrm{j} \omega C R_{1} R_{2}\right)$ $=\frac{R_{1}\left(R_{1}+R_{2}+j \omega C R_{1} R_{2}\right)}{R_{1}+R_{2}+j \omega C R_{1} R_{2}-R_{2}-j \omega C R_{1} R_{2}}$
Thus

$$
i=\frac{V_{i}}{R_{1}}=V_{\text {in }} 1-\frac{R_{1}}{R_{2}+\frac{R_{1}}{1+\mathrm{j} \omega C R_{1}}}
$$

i.e. $z=R_{1}+R_{2}+j \omega C R_{1} R_{2}$
where i is the current flowing into the input terminal.

This is of the form required and assumes the amplifier has a gain of unity, a high input impedance, and a low output impedance -
conditions easily satisfied.

American letter

from George Tillett in Chicago

Attendance at the Chicago Summer CES was about 55,000 , some 15% less than last year - although the advance bookings were at a record high. The reason, of course, had to do with the
uncertain economic situation, but the growing popularity of the January Las Vegas Show might have had an effect too. If there is a recession, some of the exhibitors seemed unaware of it, judging from the number of high-priced
luxury items on show. Infinity had a $\$ 20,000$ loudspeaker system and Lux were showing a $\$ 3,000$ turntable, while there were several phono cartridges costing over $\$ 250$. One was priced at had for a mere $\$ 1300$! If you are tired of ordinary tv, you can spend anything between $\$ 16,500$ and $\$ 30,000$ for a dish antenna so you can watch satellite

Video
As at the last Show, video discs were again a centre of attraction and the Pioneer and Magnavox demonstrations were always crowded. Both these were showing off their Selectavision player, which uses a stylus pick-up, at a hotel nearby. RCA state that recent modifications include random access and that the price will still be lower than agreement with CBS they also have access to a wider range of programme material. V.c.rs are fast gaining in popularity and several new six-hour playing mode, there is inevitably a loss in definition - particularly with models with reduced track width. The ordinary track width in VHS machines is 58 microns, but when the same heads are
used to scan the 19.3 micron width employed in the six-hour mode, the tracks overlap, causing picture degradation, since adjacent tracks are out-of-phase. Now, JVC have come up with a simple - well, relatively simple -
solution: two extra narrow-field heads are switched in for the long playing mode.
Sony's AG-300 features a cassette autochanger, permitting 20 hours of
recording time, and the programme unit recording time, and the programme unit
allows the user to record separate programmes on separate cassettes. Other Sony models use Beta-Scan, which lets
at any desired speed up to 20 times normal, with or without a remote control unit. Toshiba has a similar fast scan system, but theirs can flip the tape at 40 times the normal speed. ceiling-mounted projector to produce a picture measuring $111 / 2$ feet by 5 , and a switch allows the size to be changed. Another company, Electron Systems Products, introduced a projection sys-
tem capable of producing a $20 f t$ picture It is quite portable, measuring 20 by 28 by $91 / 2$ inches, and the extra brightness is achieved by using a liquid-coupled lens wigh liquid-cooled tu Turning
seems to be a tre dinary" tv sets, there quality and several models were seen with multi-speakers and separate amplifiers. One model even boasted circuit.
In spite of the relatively high prices, there appears to be a growing interest in dish antennas to receive satellite trans-
missions. One company quotes a basic price of $\$ 16,500$ for a single-channel system, plus $\$ 5,000$ for each additional channel. The leaflet I picked up also mentions concrete pads: "Try not to
think about mounting the antenna on the roof. It weighs 2000 lbs , it is 16 feet in diameter and it makes a great sail." You might ask what programmes are avail able to justify all this hassle? Well, there
are many transmissions intended for cable networks and they carry such intriguing titles as "Showtime", "Galavision", "Calliope" and the "Movie Channel". There is a small licence charge for hotel and apartment
users.
Audio
Two or three years ago, receiver makers were committed to a kind of 'power
race' to see how many watts they could race to see how many watts chey were enthusiastic about the cumbersome 400 watts jobs. So these days the accent is on features such as automatic scanning,

Infinity's Reference Standard.

preset station selection, bar-graphs and so on. Onkyo scooped its competitors with a receiver having a built-in "snap, like the SAE and Garrard units, which reverse the phase of the signal before removing narrow-pulse transients. A few genuine Class A amplifiers and receivers were to be seen but there is a
definite trend towards a modified Class A circuit where the output stage is biased by the signal. Efficiency is claimed to be comparable with Class B without the switching or crossover
problems. Variations are known by problems. Variations are known by
several names: Kenwood use the term "Zero Switching" and JVC use the description "Super A", while Fisher prefer "Class-II" and Technics call their arrangement "Synchrobias".
All manufacturers are aware of the problems caused by too much negative
feedback and designers have abandoned the use of "brute force" loops of 50 to 60 dB to get some impressive figures. In other words, amplifiers are loop is closed, so that only 15 to 20 dB is necessary. Yet another approach will, I believe, become quite popular - at least for the more expensive models. This is the "feedforward" circuit which inbalance out the inherent distortion in the main amplifier. Threshold were the first to use it in their Stasis model, but now Sansui have developed a similar
circuit. They introduced the first model at the Show, the AU-DII rated at 120 watts per channel at a distortion less than 0.004%. Frequency response is within +0 and -3 dB from zero to 200 kHz.
Cassette decks now offer better value for money than ever and several models $\$ 160$ with metal tape capability, large VU meters, provision for four kinds of tape, a Dolby system and a good allround performance. The more expens-
ive decks featured such refinements as digital displays, automatic programme selection, end of tape indicators and mic-line mixing. At least 12 models boasted the new Dolby HX (Headroom dual-speed ($3^{3 / 4}$ and $1 \% / 8 \mathrm{ips}$) models were entries from Marantz, BIC, and Fisher. Turntables are also reasonably priced now and there is quite a selection of
direct-drive models under $\$ 180$ Straight direct-drive models under \$180. Straight superseded the old familiar S-shaped designs, although Technics still use hem in most of their range. Linear racking or straight-line arms are becoming more common, and among
those seen were models from Technics, Harman-Kardon, Mitsubishi, Yamaha, Phase-Linear and Dennesen. The last named turntable uses a tiny air pump to float the phono cartridge. Lux also have
a turntable which employs a pump but a turntable which employs a pump but
this one creates a vacuum to hold down the record so it is really flat. It seems to be an expensive way of doing things, as
the price of this model is $\$ 3000$! Dual were using a special record to demonMass (ULM) arm and Ortofon phono cartridge. The record carries a 300 Hz signal, but it also has eight uniformly spaced warps. The eight-gram ULM combination plays it with no trouble, duced by a standard 18 gram arm combination could easily be heard.
Once again, the Show was enlivened by a fascinating array of loudspeakers ranging from shoebox models to war-
drobe sized behemoths. The most elaborate system was Infinity's new Reference Standard at a cool $\$ 20,000$. It consists of four modules, 7 ft 6 inches high which house two 1.5 kilowatt bass amplifiers as well as the drive units.
Each bass column contains six 12 inch drivers and servo feedback is obtained with an accelerometer. Crossover frequency is 70 Hz and the midrange section consists of a vertical stack of 12 prranged as a dipole. High frequencies are handled by another stack of 36 planar units. The cabinets are 1 inch thick and some of the sections are sand-filled (remember the Wharfedale
baffles?) and the total weight is 1200 lbs baffles?) and the total weight is 1200 lbs.
How did it sound? Well, it was unquestionably very, very good and the low frequencies were particularly impressive. After all, a dozen 12 inch speakers can move a lot of air! Although the system is not a true lime outstanding, but it must be said that the overall gain over a really good pair of $\$ 1000$ systems is quite small - at least at "normal" listening level eturns.
Cerwin-Vega were demonstrating a new model, designed to "meet the chalis a three-way system with an 18 inch bass driver and a 12 inch co-axial unit, which has a compression tweeter An unusual feature of this model is the use of inert gas to effectively increase the volume of the bass compartment of the enclosure. No, the gas can't escape: it is contained in plastic bags. The system
stands 52 inches high and it will handle 1000 (yes, one thousand) watts continuous power.
The Ionophone is back again: its new name is "Ionovac" and the one at the
Show hailed from West Germany Crossover point has been moved an octave up to 6 kHz . My old original used to radiate for a considerable distance on all tv bands, which caused some friction with the neighbours, but I'm told that overcome. Sony had a large, floor-standing system using four drivers, all with flat
diaphragms made from a honeycomb diaphragms made from a honeycomb carbon fibre material. The bass speaker
diaphragm is about 13 inches square and it is driven by four speech coils, positioned to "ensure a piston movement without flexing". Jumetite, a

Wireless worlo september 1980 Canadian manufacturer, were demonstrating the latest version of their sys-
tem, which uses a horn-loaded ribbon tem, which uses a horn-loaded ribbon
transducer from 600 Hz up - some of transducer from 600 Hz up - som. The VSC company introduced several low-priced cassette players using a new i.c. with a "bucket-brigade" chip to
provide high-speed, intelligible audio provide high-speed, intelligible audio
playback at speeds up to three times playback at speeds up to three times
normal. According to the makers, there normal. According to the makers, there
is a definite interest in the idea from manufacturers of v.c.r.s that can operate
in the six-hour mode. in the six-hour mode.
Crown introduced the unique PZM
microphone at the January Show and again, it was attracting a lot of attention. It uses a new principle of sound detecting, using the pressure zone at an
acoustic boundary to eliminate distoracoustic boundary to eliminate distor-
tion problems common to other tion problems common to other
microphones - so say the inventors. The active element is a pressurecalibrated electret capsule and it is mounted on a plate measuring 5×5 Pnches. One of the advantages of the. independent of distance, but the gain in clarity is almost unbelievable. In one demonstration, it was compared with a very expensive German studio a large orchestra. As soon as the PZMs were switched in, the feeling of strain simply vanished. Various models are available and they can be put inside a bass drum or piano, since inputs as high as 150 dB can be handled.

Garrulous gadgets

Talking clocks, calculators and microwave ovens are becoming common-
place and speech quality is improving. One reason is the use of new chips that can synthesize phonemes. It is said there are at least 45 uniquely different sounds needed to phonetically create words in the English language. These, produced by a new l.s.i. chip made by Votrax. There are also three "pause", phonemes often necessary to separate phrases in continuous speech, so the result is a total of 64 phoneme selec-
tions. The duration of each phoneme is fixed, the slowest being 40 ms and the fastest 250 ms . Pitch variation varies automatically, or it can be controlled by an external "clock". Continuous elec-
tronic speech is created by sequencing tronic speech is created by sequencing
sounds into recognisable. words. For instance, 'phoneme' becomes F-01-N-El-M.
Panasonic were showing a talking
calculator which had a female voice calculator which had a female voice
with an impeccable British accent with an impeccable British accent -
Roedean, if I'm not mistaken. Casio had another which also contained a clock, date memories, a calendar and 12 recorded tunes. The user could program tunes for special occasions such as March", but one tune could not be changed. The thing plays "Jingle Bells" every Christmas

कTRIO
 TEST
 INSTRUMENTS

THE RANGE HAS INCREASED THE PRICES ARE DOWN

THE CS $183030 \mathrm{MHz}+$ Sweep Delay

 Brief specification
Rectanguar PDA
Rectangular PDA tube $120 \times 96 \mathrm{~mm}$. P3il phospho
Bandwidth
PC -30

 CS1830 only $£ 455+$ VAT includes 2 probes

THE C51572 30 MHz for the VTR Lab.
If you are in Video, you need the CS1572 The CSI 1572 is a dual trace 30 MH . oscilloscope designed for the video tape recorder
engineer. Video delayed sweep facilities are provided to allow magnitication and analysis

 Osvideor fac full story on
astiof Specification

CS 1572 only $\mathbf{£ 4 2 5}+$ VAT, includes 2 probes

THE CS1577 30 MHz at $2 \mathrm{mV}+$ Signal Delay
The most popular scope in the range.

 Truly an oscilloscope masterpiece. CST, includes 2 probes
$\mathbf{C S} 1577$ only $£ 410+$ VAT,

THE CS1575, unique dual trace 4 function Audio Scope

Absolutely indispensable to the professional audio engineer, the CS1 1575 is now in use
all over the word. See it in action or send for complete detais.
CS1575 only £235 + VAT
AND TWO NEW ADDITIONS TO THE RANGE
DL705 MULTIMETER

$£ 70+V A$

${ }^{10 \mathrm{~Hz}-500 \mathrm{MHz}}$
50 mV
Superb
instrument

For further details and ex stock delivery contact

The previous article, in the August issue, ended with an outline of the three-chip colour decoder. The present article continues with further description of this decoder before passing on to other sections of the

 receiver.Various sections of the circuit require
arious sections of the circuit require gating, blanking and clamping. Fig 10(b) shows the various pulses required nd their relative timing and Fig. 10(a) hows how the signals are affected by The
The "sandcastle" pulse is a con enient way of applying two pulses into sort out which width of pulse should go which section of circuitry.

1. Sandeastle pulse on pin 7 of TDA 560. The narrow top part of the pulse is sed to clamp the luminance signal at back level during the back porch. The determined by the position of the brightness control. The wider lowe part is used to gate the gain-controlled amplifiers which control the saturation and contrast (saturation tracking) these amplifiers are switched to maxi mum gain to prevent disturbance to the a.c.c. loop. This pulse must be wide enough to cater for
2. Sandcastle pulse on pin 15 of TDA 222. The narrow pulse gates in the burst for use in the subcarrier regener ator section of the i.c. This pulse mus noise performance. However, due to the tolerances on broadcast burst position, some degree of adjustment is necessary o the leading edge of this pulse to part of the burst is lost, the pull-in range of the subcarrier regenerator a.p.c. loop will be impaired.
The wider part of the pulse is used for blanking the chrominance signal for the whole of the line and field flyback periods. This is needed because the amplifiers to maximum gain inevitably produces coloured noise during these periods and this would show on the screen.
3. Luminance blanking. After the nar ow part of the pulse inas clamped th lack level to the voltage set by the eld pulses blank the signal during the whole of the line and field flyback periods. Thus these pulses must be derived from the line and field timebases he luminance signal is blanked to a einserted level of +1.5 V . This hroughout the remainder of the de coder.
4. Output clamp. A pulse wider than that of the chroma gain switch but hat of the chroma gain switch bu equired for clamping the colour dif ference signals before they are added t the luminance signal. The control fo each of these clamps is derived from a ensuring that the d.c. level of this out put signal (and hence the black level on he c.r.t.) is closely controlled within a edback loop.
The background controls, for preset ing the black level of each colour, ar

Video outputs

Video output stages need to drive up to 90 V p-p of video at a reasonable band which has a substantial capacitance The amplifier obviously needs to pre sent a low output impedance to this load and a simple class A amplifier for this able number of watts. Consequently several types of low-dissipation circuit have been developed to overcome this problem. The 70 series chassis uses a (Fig. 11). - In this circuit the drive is applied to a transistor operating as a high class A amplifier with a high-resistance load long kaepthis transistor is being down. A (i.e. the signal at its collector is going towards the 0 V line) the output imped ance is effectively low. However, if the drive to the class A transistor starts to go in a negative direction, trying to turn
it off then the output impedance would effectively be the high resistance col lector load. Hence the reason for the second transistor, which acts as an mitter follower for positive going out
low output impedance to the c.r. athodes.
To ensure good linearity of the output waveform, feedback is applied over th
whole stage, part of which is in the whole stage, part of which is in the i.c.
Here, a sample of the blanking level is also taken and the d.c. level of the utput corrected as necessary. The c.r.t. background controls are d.c. poten
tiometers acting in this part of the

Sync processo
The purpose of the sync processor or "jungle" i.c. is to select the sync pulse from the video waveform, and use them to phase lock an oscillator running at
the same frequency. By careful choice of time constants the phase locking process reduces the effect on the pictur noise and disturbances on the video waveform. The resulting line driv phase locked loop with flyback pulse derived from the line output stage and he resulting pulses amplified to drive he line output transistor. The sync processor i.c. may also separate out field clamping pulses for the colour decoder The TDA2571 used in the 70 series chassis does not contain the second phase-locked loop which compares the line oscillator output with the lin
flyback pulses. This loop, as we shall see, is contained in the power supply ontrol i.c.
The TDA 2571 innovations, an adaptive sync separasystem. Conventional sync separator are based on the d.c. restoring circuit shown in Fig. 12(a). Tr_{1} is biased by R_{1} so that it is just on the point of conducting As each sync pulse comes along it drives shown. The time constant $10 \mathrm{R}_{1}$ is chosen so that sufficient charge leaks away between pulses to enable each pulse to turn Tr_{1} on. This type of circuit is particularly susceptible to noise on cross-modulation on the received signal. The principle of the adaptive sync separator used in the 70 serie chassis is shown in Fig. 12(b)

The video signal is applied to a gain sync pulse and sets the black level and sync tip level at the two levels shown. A

Wireless world, September 1980
these levels and corrects the gain of the amplifier as necessary. With the sync pulse having been closely defined,
small slice is taken out of the centre of it and amplified, thus producing a ver stable, closely defined sync pulse. This type of circuit has been demonstrated to be markedly superior to the older type of circuit especially under noisy, conditions.
Once the mixed sync pulses have been separated out, a further circuit separates out the field sync pulses.
Often simple integration is sufficient but again poor signals can result in poor or even no field pulses. Obviously the mixed sync pulses from the adaptive type of sync separator give improved field pulses but certain signals can be
improved by the use of a field pulse count-down system.
A set of dividers counts down from the line oscillator frequency (in this cas $2 \times$ line frequency $=31.25 \mathrm{kHz}$) to the field frequency of 50 Hz and produce an mal integrating sync separator pro duces a field sync pulse directly from the mixed sync waveform and this is compared with the count-down pulse. If the two are completely in phase for a
sequence of complete fields, the counted-down pulse is fed out to the

field timebase. If the pulses are not in phase, the integrated pulse is fed out processing of signals which do norrect a defined count-down ratio between line and field sync pulses (e.g. some cctv cameras, video games, etc.)
which necessary delay in deciding nhich pulses to feed out causes effect on the picture - on changing sync sources (e.g. changing channels) the picture locks momentarily with the field blanking interval in the centre

Direct frame sync
It was discovered, early on in the deve lopment of the 70 series chassis, that is the cttv camera or video game, or
${ }_{2530}^{\text {TDA }}$

Fig. 11. Video output amplifier (simplified).

field sync when required. The customer channel-select switches are arranged to
switch in this feature in conjunction with the a.v. time constant switching for v.c.rs etc.

Fig 13. Simplified diagram of line output
stage.
directly across the supply and, consequently, their impedance (which, at
15625 Hz , is largely composed of their inductance) and their sensitivity determine the supply voltage. The basic formula used is $E=-L$ (di/ $/ \mathrm{d} t$). The resistor R is required to limit the current in the flashover and extra volts must be allowed for the drop across this resistor. The line output stage is often a secondary power supply itself, the e.h.t. and focus voltage for the c.r.t. Sometimes tapped windings, scan rectified, are used to produce some supply voltages for the signal circuitry. All these sources add to the current through R and contribute to the volt In the 70 series chassis all the supply lines except one are taken from the s.m.p.s.s.u. transformer. This avoids any losses due to conversion efficiency in ht is taken from the line output stage because of the need to "track" the height with the width during c.r.t. beam current variation. When the beam cur-

The requirements of the main output of the power supply are largely governed
by those of the line output stage. The by those of the line output stage. The
least losses (and hence lowest dissipaleast losses (and hence lowest dissipa-
tion and highest reliability) occur with low current, high voltage line output devices. The transformer is also simpler in this configuration, acting just as a high impedance supply choke as far as
the line scan coils are concerned (Fig. 13). Hence the scan coils are switched

Fig. 14. Block schematic of the TDA 1170
field field timebase i.c., including os cillator,
sawtooth generator and output amplifier.
Fig. 15. Field output waveform with and without a flyback generator.
through R increases and so E falls, resulting in a drop in e.h.t. Now both
line and field scan sensitivities are affected by variations in e.h.t. and, in general, when the e.h.t. falls the picture on the screen gets bigger. However when E falls, so does the scan current $(E=-L(\mathrm{di} / \mathrm{d} t)$ again) and by careful
choice of the value of R the "breathing" of the picture width can be reduced to a minimum. However, if nothing further were done, the height would apparently alter with beam current.
Since a scan rectified supply goes up
and down in sympathy with E this is a convenient source for the field timebase, enabling the height to "track" with the width.

Field timebase

This uses the well-established TDA1170 which has operated successfully for several years in the 80 series chassis. The i.c. is a complete timebase with
oscillator, sawtooth generator and output amplifier (Fig. 14). The output circuit incorporates a flyback generator which helps to reduce power consump tion. In some circuits the field flyback is contained within the supply rails and

> Flyback
consequently a good deal of power is wasted (Fig. 155, In the TDAl170 the
supply is only sufficient to contain the supply is only sufficient to contain the supply is switched to a value which is flyback is achieved with lower dissipa-
tion. (To be continued)

Notes on Part 2

For space reasons we deleted a few lines from the text under the section "Sound i.f.and
output" on page 64 of the August issue. As output on page 64 of the August issue. As
the uuthor feels the matter is of importance to the design we are printing them here.
The 18 V supply for the TDA 1190 Z is taken The 18 V supply for the TDA1190Z is taken
from the switched-mode power supply since from the switched-mode power supply since
the large current pulses which the audio output stage takes during bass transients would cause unacceptable picture movemen
if this supply were scan-derived. Acknowledgements should have been included to Mullard Ltd for permission to
publish Figs 4, 6. 7 and 8. - Ed.

TEEMYERS TOTMUE EDTHOD

COMMUNITY RADIO Norman Macleod could have strengthened
his arguments about community radio his arguments about community radio
(June/July issue) by reference to the experience of the surprisingly lively pir
broadcast radio in the nation's capital broadcast radio in the nation's capital. 1. Londor has had a community radio sta-
tion. For about fifteen months until it finally tion. For about fifteen months until it finally
ceased transmitting in the summer of 1979,
Radio AMY (Alternative Media for You) Radio AMY (Alternative Media for You)
attempted a service for the six North London boroughs of Camden, Islington, Haringey, Enfield, Barnet, and Hackney. The rather idealistic collective that ran it had a vision of
London divided into five manageable radio London divided into five manageabie radio
constituencies, three north of the river and constituencies, three nouth. The six hours of programming even locally produced music and dramatics. even localy produced music and dramatics.
It was the very scope of their ambitions which was their undoing - quite different from the usual deejay shows of the conven-
tional pirate. In the end the collective was too tional pirate. In te end the collective was too
exhausted to carry on - all that work with no possibility of a source of finance. Still, while it lasted and after I had written it up in Time
Out, there is no doubt it had a substantial following. 2. A number of the spectrum 'holes' referred
to in the Fred Wise report are actually used to in the Fred Wise report are actually used
most Sundays by the present generation of pirates. In general, the medium-wave operators start around mid-day and close well
before the dusk brings extended propagation before the dusk brings extended propagation
and the v.h.f. stations tend to come'on in the evening, though one well-established v.h.f. pirate who sometimes uses stereo prefers 12
mid-day to 3 p.m. Readers with the right sort mid-day to 3 p.m. Readers with the right sort
of equipment may like to judge for themselves the extent to which these stations cause interference both within their nominated territory and beyond.
Lest this letter be misunderstood, I am not in favour of unregulated use of the radio spectrum, far all the obvious reasons. But,
faced with the poor record of the Home Office Radio Regulatory Department in pre senting honest information on the availability of r.f. spectrum space and the
politician's lack of vision in restricting poitadians licences to only two bodies, the occasional carefully planned and well engin
able.
Lennie Michae
North London

IEEE BUS STANDARD

 Some clarifications are required in the articleby P. R. Ellefsen published in your June/July
issue.
IEEE-Std. 488 (1978) defines with precision the General Purpose Interface Bus (GPIB)
including its electrical and mechanica specifications, and the interface functions. IEC 625-2 will provide further guidance on byte-serial data streams.
In his discussion on the type of data driver required by IEEE-488 (1978) Mr Ellefsen is
imprecise in his interpetation of the standard. He writes ". . . some means o
allowing one device to control the state of a
bus line has to be provided. The available options are twofold: three-staté logicic, and
wired-or. The more universal, and cheaper, wired-or system is used.

1. The GPIB uses binary logic. It is optional to use three-state output stages on gates
driving the ATN, EOI, DAV, REN, and IFC lines. " 2. By "wired-or" Mr Ellefsen means "opencollector". The RFD and DAC, messages are
a "wired-and" combination of all the opencollector gates conninated to the all the openor" combination of all the open-collector gates connected to the SRQ line
2. The DIO1-DIO8 lines may be
3. The DIOI-DIO8 lines may be three-state or open-collector outputs. In the Parallel-Poll
Active State these lines must be open collector
4. If thre
5. If three-state drivers are selected for DAV and DIOI-DIO8 then the GPIB data rate can
be up to IMbyte/second be up to IMbyte/second. To say that "A
tacitly agreed limit of $250 \mathrm{kbyte} /$ second i therefore normally accepted" is a serious The maximum data rate permissible on the GPIB is:
(a) $250 \mathrm{kbyte} / \mathrm{s}$ using open collector dat (b) $500 \mathrm{kbyte} / \mathrm{s}$ using three-state drivers for DAV, DIDI- DIOB and EOI. (c) IM byte/s using three-state drivers for
DAV , DIOI-DIO8, EO1 and ATN, provided that (i) not more than 15 m of cable is used (ii) there is at least one standard termination network per metre of cable, (iii) there are no
powered-off instruments on the bus, and (iv) powered-of instruments on the bus, and
the device capacitance is less than 50 pF. In practice there are few GPIB instrument able to transfer data at even $250 \mathrm{kbyte} / \mathrm{s}$
however, this is not a limitation of the bu however, this is not a limitation of the bus
but of the instruments. In the future it is likely that test systems designers will requir data rates
The GPIB Parallel Poll function is a source of frequent confusion. In the Parallel Pol structs the current Listener how to responid to a subsequent Parallel Poll sequence, The interface function will give an affirmative Poll Active State (PPAS) only if the local "individual status" device message (ist) corresponds so DIIS of the last received PPE message. For example, if DIO4 was a ' ' ' the
'ist' must be T ' for an afformative PPR to be sent. If DIO4 and 'ist' are in opposite states then there must be no PPR in PPAS. Because DIO1-DIO8 are open-collector
loutputs and not three-state, the PPR received by the Controller is the wired-or function of all devices whose 'ist'. message mand received by each device.
Jonathan Summers
Fairchild Camera \& Instrument (UK) Ltd

The author replies:
My thanks to Mr Summers for his comments.
Regarding drivers it is quite true that threeRegarding drivers, it is quite true that three-
state drivers may optionally be used on some State drivers may optionally be used on some
lines, usually with the intent of increasing lines, usually with the intent of increasing
speed, and the end of the section which Mr

Summers quoted should read " . wired or system is generally used".
I particularly tried to avoid confusion in
the article by not referring to the RFD and the article by not referring to the RFD and DAC messages (which are the logical inverse
of the state of the NRFD and NDAC lines) It is, however, clear that wired-and of RFD (for is, however, clear that wired-and of RFD
example) is equivalent to wired-or of NRFD. I
note, incidentall note, incidentally, that Mr Summers
occasionally occasionally refers to the bus lines by their
"high true" logical names (e.g. SRQ). This is a very useful way to refer to the lines when designing interfaces to the bus, but can lead to confusion when referring to the standard
which, as I mentioned in the article, uses "low =true" logic.
My statement that $250 \mathrm{kbyte} / \mathrm{sec}$ is a generally accepted maximum data rate is generally accepted maximum data rate is
based on paragraph 5.2 of the 1975 standard
which states: "A standard which statess "A standard performance bus
will operate at distances up to 20 m at will operate at distances up to 20 m at
maximum of 250,000 bytes per second .. maximum of 250,000 bytes per second ...
using 48 mA open collector drivers'. How ever, Mr Summer's explicicitly detailed definition of data rates is totally accurate. Not
that in paragraph 5.2 .3 of the 1978 standard, a warning is given that if a speed-enhanced talker is used to achieve $1 \mathrm{Mbyte} /$ s data rates, with standard talkers, problems may be
experienced even when the interface is not being used at that rate.
Mr Summers's section on Parallel Poll is
extremely extremely lucid, and I thank him for it.
Finally, I should like to correct a mistake Finally, 1 should like to correct a mistake
which somehow crept into my manuscript.
On p 77 the "untalk" message should be "1011111", and "unlisten" "0111111".
P. R. Ellefsen

MILITARY ELECTRONICS Your News of the Month in the June/July issue reports that according to the Defence Estimates the defence equipment programme sustains about 200,000 job oppor-
tunities within the and about the same number again indirectly in industry.
wars seems to me to be illogical to work for wars in peace-time, even if they are only
vaguely vaguely anticipated, i.e. by building up one's
defences It defences. It was, e.p., a very old Roman -precept which said: 'if you desire peace,
prepare for war', and, as the late Lord Mountbatten pointed out in a speech shortly before he died, that precept is now "absolute before he died, that
nuclear nonsense".
The defence pro
nuclear nonsense".
The defence programme therefore seems to me to be an illogical development of electronics, and also, perhaps, an in
creasingly dangerous one. Would this not seem to imply that the electronics engineers employed to maintain the defence equipment
programme would therefore programme would therefore (a) be better off
on the dole, since (b) their knowledge of electronics may even have serious gaps, electronics may even have
inconsistencies, or failings?
ne
This policy (to make these jobs redundant)
could also help considerably could also help considerably to reduce in
flationary pressure in the UK, as well as giving support to pacifism, which is surely
the only sensible philosophy in Western the only sensible philosophy in Western Europe at the pres
Peter G. . Dawe

WHAT'S SO NATURAL

ABOUT e?
Die ganzen zahlen hat Gott gemacht,
Alles anderes ist menschenwerke Alles anderes ist menschenwerke
I do not understand why Dr Finlay (De: cember, February, April) wishes to determine who made it was clearly not satisfied with integers. It has always been my wish, how-
ever, that these columns should bring light ever, that these columns should bring ligh pecially my bank manager.
Three jam-jars, I think, will be better, and
nothing you can't find if desperate enough othing you can't find, if desperate enough,
in the ordinary home. I do not possess a metre rule, but some quick hammering at a ceiling has provided a lath just over a metre long. A tape measure, some sand or sugar, or
if your grocer is old-fashioned, a mixture, and tring.
The jam-jars are best replaced by those
revolting plastic beakers, with string handles stapled on to make small buckets. The metre rule is drilled at its centre, and pivoted, or hung by string from a convenient support.
A supply of what the French call le Scotch so described to help to break down the separation of the two cultures, will be useful, or, preferably, draughting tape. Most readers
will have this in their homes (Deuteronomy Ch. 25 v .4)
We now have our balance, the suspended metre rule. I propose to measure from the centre, 500 mm . Set one empty
and another at -300 (200 and 530 on the scale).
scale.
Use a small coin to trim the balance, mark its position with the tape. Remove it.
Set buckets at +300 and -300 . Fill to
in about one-quarter and then add salt/sand/
and sugar to get a balance. Remove one bucket
and mark it as 'reference standard'. Set the other unit weight at +30 and an empty bucket at -300 . Replace the trimmer. Add material to the -300 bucket to get a balance.
Empty the material from -300 into +30 . empty the material.
Set this bucket, now nearly $3 / 4$ full, at -100 , nd use the standard bucket to measure its or $\times 100$.
The operation is based on the defining equation:
$\frac{d}{d x}(x)=f(x)$

Fig. 1. Determination of π. Each chord, $A B, B C$ etc. to $M N$ is equal
this gives $\pi=3.1$.
he process corresponds to finding π by th onstruction of Fig. 1 . As each chord is
hort cut the value is always low, and I was urprised to find that on a diagram with 10 cm B.... N, A came to 3 lcm .

We can draw another form, producing tangents. This gives a high value, again
surprisingly close. The corresponding approach to e is to start with the standard buckets fairly full. Material is spooned out of he +30 bucket into the -300 bucket to get
balance, and is then discarded. Again te steps are taken and the materials remainin weighed against the standard. The basic experiment can be elaborated.
The effect of taking fewer large steps, and more small steps, can be studied: the size of δ from $\epsilon(x), x=0$, through $x=0.1,0.2$ up to 0.9 can be recorded. With rather more stable goes on can be shown.
Finally, there is one feature of this system which I find particularly attractive: you don't
need the apparatus at all, or, to put it another way, you can repeat the operation on your
adding machine:
$\mathrm{f}_{0}=1.00,+0.1 \mathrm{f}_{0}=0.1$
$0_{0.1}=1.1+0.1 \mathrm{f}_{1,1}=0.11$
$\mathrm{f}_{0.2}=1.21 \ldots . .1 .32,1.45 \ldots \mathrm{f}_{1.0}=2.56$.
But my little adding machine, the back of an envelope, finds 3 significant figures the limit. classier machine gave me 2.3579
Thomas Roddam
SCIENTIFIC COMPUTER would like to thank John Adams and your
selves for such an excellent and timely selves for such an excellent and timely
educational project as the Scientific Com puter which appeared in your April to September, 1979, issues. Although I have dynamic random access memories and the use of an unmodified 525 -lines 60 -field/s
television set for video display Mr television set for video display, Mr Adams's
design presented me with the exposure and guidelines which were necessary to undertake sucha project as an amateur.
Mr Adams's design utilizing the MM57109 number oriented microprocessor as a number oriented microprocessor as a
peripheral device of the Z80 main microprocessor to handle computations is indeed a
novel one. This technique should be very novel one. This technique should be very
attractive to those developers catering attractive to those
specifically for applications in science and
engineering.
BURP Mk iI has greatly enhanced the facilities of the computer but still lacks a few very vital functions like string variables, arrays and read/data statements. However,
tre branching of control to an address in r.a.m. for unrecognized commands, statements and functions allows additional facil-
ities to be added fairly easily In fact f have ities to be added fairly easily. In fact, I have
added the use of REM for remarks, LINK N as a statement to link BURP and machine language programs and have changed the multi-statemen
familiar colon.
I should mention here that, instead of reprogramming my original I....ms with the
Mk II monitor /interpreter firmware I have Mk II monitor/interpreter firmware, I have
rewritten the Mk II so that it will load and run in ra.m. at location 15AO to 1D4F. This modified version of BURP Mk II is then saved on cassette tape and re-read into the com-
puter when necessary. This exercise is done puter when necessary. This exercise is done
only as a temporary means of making use of
he added facilities of BURP MK II and retain eleprinter until I am satisfied that BURP mware is sufficiently developed with enough facilities.
My system comprises 3 K r.o.m. from 0000 o OBFF, expandable to 0 FFF (4 K) and 12 h
dynamic ra.m. from 1000 to 3 FFF , expand able to $7 \mathrm{FFF}(28 \mathrm{~K})$. The video display emains memory-mapped from 8000 upwards but of necessity comprises half pages of 16 each displayed half page automatically or manually selectable.
Since the computer makes use of r.a.m.
area 1 E00 to 1 FFF without memory protection, I have transferred the commencement of BURP program loading to 2000 . This
position prevents long or sequenced BURP programs from extending into memory area used by the computer and also semi-reserves the area 1000 to 1DFF for machine language
programs and any additional facility that may be added to the interpreter.
I invite comments from interested persons
via P.O. Box 65, St John's, Antigua, West Eustace N. Phillip, VP2AX Sustace 's.
Antigua, W.I

TECHNICAL AUTHORS

 was sorry to see that Mr Ronald C. Slater's otherwise comprehensive article on Careersin the Electronics Industry (May issue) should have overlooked so completely the
engineers who produce the manuals and engineers who produce the manuals and success of a product can, and often does, finally depend. The work of the technical
author surely deserves - together with that of engineers engaged in the parallel activity of technical training - to be ranked with "the main activities of a typical company". repair information is an essential support service for electronic equipment. It is
generally a contractual requirement and a generally a contractual requirement and a
potential customer may be expected to defer the purchase of any new product, however meritorious, unless and until the necessary
technical manuals are made available. technical manuals are made available.
It takes an electronic engineer to generate It takes an electronic engineer to generate product, but his engineering attainments
must be complemented by a willingness and must ability to commmunicate graphically and in writing. Unfortunately these are unfashionable attributes and such people are becoming increasingly rare. It is perhaps for this reason
that competent technical authors are at long last beginning to be offered the sort of financial reward that their dual ability has
always deserved always deserved.
The presentation of technical information offers a great deal of scope for expertise and can be highly satisfying. It is a much more
creative activity than is commonly supposed. In explaining a circuit or a system in detail, the trained author constantly monitors his work through the eyes, so to speak, of a reader
seeking enlightenment; the author thus subjects the design he is describing to a measure jects the design he is describing to a measure
of independent critical analysis and this can
result in his result in his contributing to the development
of a new product as well as to its eventual of a new product as
success in the field.
The growing scarcity of technical authors may well bring serious consequences for the
industry. Those concerned with the educaindustry. Those concerned with the educa-
tion of engineers should make it their busi-
ness to understand the importance of tech-

The author replies:
I would like to thank Mr Powell for his comments. While it was made clear that the
article was not intended to be an exhaustive list of careers in electronics I would, never-
art theless, agree that the technical author occupies an important place in the industry
and that they are in short supply as, indeed and that they are in short supply as, indeed,
are good engineers and technicians of all persuasions. For the engineer, male or
female, who has the ability and incliniation it female, who has the ability and incliniati
can certainly be a very satusfying task. It is difficult to comment on technical communications without remarking on the notorious inability of the majority of engin-
eers to communicate effectively. It is a point which has been made time and time again but one which the educationalists seem reluctant to act upon.
Ronald C. Slater

FEEDBACK FOR P.R.B.S

 GENERATORS With reference to the article by the late MrButier in the February 1975 issue on PseudoButler in the February 1975 issue on Pseudo-
Random Binary Sequence Generators, Rand
think your readerse may be interested in the
full criteria for feedback selection. Careful full criteria for feedback selection. Careful
choice must be made to ensure the full sequence length of $2^{n}-1$ bits occurs. If we consider the total shift register
Iroken into two broken into two parts, with feedback around
the system below, provided that $a \neq 1$ and

$b \neq 1$, if $x a=y b$ where x, y are integers then $b \neq 1$, if $x a=y b$ here x, y are integers then
the system breaks down to being equivalent
to two interlaced sequence to two
later)
To illu
later).
To illustrate the point, suppose that $a=4$, $b=$ 2. Logic state p at the output will be
dependent on logic states $p-4$ and $p-6$ (four dependent on logic states $p-4$ and $p-6$ (four
and six clock pulses ago, respectively). Thus even logic states are dependent only on preceding even states, and odd states depend
only on odd states. This lack of interdepenonly on odd states. This lack of interdepen-
dence causes the system to act as a pair of dence causes the system to act as a pair of
interlaced, independent, three element
and generators, so the total sequence length is
only $2\left(2^{3}-1\right)=14$ bits instead of $2^{6}-1=63$ only 2
bits.

 p.r.b.s. generator with an extra delay, of
suitabe lenth to provide positive feedback (since 12 is a multiple of 3).
As a result of the above, rules can be drawn up which must be obeyed for non-degenerate p.r.b.s. operation:
$a \neq(a+b) v / w$ ex
$a \neq(a+b) v / w$ ex
$a-x \neq y\left(2^{b(b x-x}-1\right)$
$b-x \neq y(2 a x)-1)$
$b-x \neq y\left(2^{(a-x}-1\right)$
where $w=1,2, \ldots,(a+b-1)$.
$x=1,2, \ldots,(w-1)$.
$x, y=1,2, \ldots$, (smaller of a and $b)$
A feedback connexion table generated Arom these equations is given below. There are a few no
Butler's table.
a+b Non

\section*{1,2

1,2
1,3
1,3
1,5
$1,2,3,4,5$
3,5
$1,2,4,5$,
$3,4,6,7$
$2,3,4,5$,

$1,2,7,4$}
$1,5,7,11$
$1,2,3,4,5,6,7,9,11,12$
$\begin{array}{ll}14 & 2,3,4,5,6,8,9,10,11,12 \\ 1,2,3,4,6,7,8,9,11\end{array}$
Note that it is simple to 'construct' these
devices in microprocessor systems. I have written a Z 80 routine for a 64 -elemen generator in less than 32 bytes.

K. Wood Ipswich Suffolk

ILLICIT CB ON 27 MHz

number of people have urged the Govern ment to move quickly on citizens' band radi before illicit use of 27 MHz gets out of hand. have. The authorities will never catch thes users (they can't even be bothered to catch those who jam v.h.f. amateur radio repeaters addresses of the offenders; how will the catch tens of thousands of illicit c.b.ers?) even with the current wave of indis criminately stopping anyone and everyone
with a non-broadcast antenna on the roof of their car (RSGB cards count for nothing and now have to carry my licence at all times not a legal requirement officially) users on to another band. Certainly, rigs will have to be a good deal cheaper than th
f50-1too black-market rice of an 27 MHz rig smuggled into the country, and don't see that as being economically viabl for British manufacturers as there will only be EEC adopting a system other than
the EEC the EEC adopting a system other than
27 MHz a.m./s.s.b. must be pretty remote.

And there'll always be people who prefer the want to say ' $10-4$ ' to each other: they'll never give up 27 MHz . And there's something to be
said for international compatibility. My 2 metre amateur rig is pretty useful anywhere in the world I care to go with a reciprocal
licence. Would it not be a good thing to standardise c.b. equipment in a similar
way? Then there would market to encourage UK manufacturers (who already make the odd frequency syn-
thesiser for Japan) and the possibility of thesiser for Japan) and the possibility of
cheaper rigs. Temporary import controls cheaper rigs. Temporary import controls
could establish the UK industry, which could then stand or fall on its ability to compete internationally
What this all comes to is two points. First,
27 MHz will never problems are easily sorted out and it really comes down to acknowledging that the
present thousands are unlikely to leave the present thousands are unlikely to leave the
band. Either they are legalised or they aren't. Second, prices for v.h.f. rigs that are above the $£ 50-\mathrm{El100}$ mark will ensure the continua-
tion of 27 MHz use and will equally ensure that the average 'citizen' won't be able to afford to use his 'band, leaving the way open, for a future government to take the said band
away 'because nobody's using it it was never really necessary'. At best, such a c.b. would be little broader-based, socially speaking, than the amateur bands, which are almost
iexclusively middle-class. US and illicit UK 27 MHz activities are totally classless, at least partially, because everyone can afford a rig. After long consideration we may find that
the technical arguments against 27 MHz which are very powerful and generally sens-
ible - must be reconsidered in view of the ible - must be reconsidered in view of the
social implications of a v h citizens' band or social implications of a v.h.f. citizens' band or
indeed any band which requires expensive requipment and isn't already - albeit illicit in use.
Richard Elen, G8RJX

ELECTRONIC IGNITION

 I was most interested to read the letter from have been building and using c -d systems for eight years. Last year 1 wrote to a well knownmanufacturer with some constructive criticisms of his design. A few days later I received the offer of a aob! My own conclusions are: always to blame for spurious faults, although careful attention must be given to the choice of suitable components; in particular, the
thyristor and the capacitor which must tholerate very fast risetimes, high voltage and tolerate very fast
high temperature.
2. The high outp
2. The high output voltage from the coil
attached to $a c-d$ unit is susceptible to leakage and arcing caused by damp, dirty or leakacked h.t. leads, faulty coil or suppressor caps.
3. C-dig
3. C-d ignition does not appear to cope with a weak mixture any better than standard Ket-
tering ignition, possibly because although the voltage can be higher, the duration of spark
system.
4. The c-d system does seem to cope with a rich mixture, perhaps because its fast Note that points 2. and 3. can result in misfiring from a c -d driven system but apparently acceptable from standard ignition
M. T. Pickering

90
WORLID OFRMATMEUUN RADIO

Long-path and

simple aerials

The ability of amateurs using only simple aerials to work long distances by
taking advantage of the extremely reliable morning chordal-hop, long-path to Australia, via the dawn and dusk "tilts" in the ionosphere, rather than multi-hop paths, is underlined by the observations
of Ron Fisher, VK3OM of Glen Waverof Ron Fisher, VK3OM of Glen Waver14 MHz s.s.b. some 147 different British amateurs under "long-path" conditions during the past year. Of these, 55 of the British stations were using dipole-type vertical monopoles, four were using "mobile whips", representing a total of 91 with simple aerials, compared with 56 using beam arrays of various types. He some of the more consistent British stations heard in Australia at this time of day use dipoles; they are not necessarily the strongest signals but often the difference between them and the stronger signals heard a "he same time
is small, perhaps $1-11 / 2$ " S " points. (S point calibration varies widely between different receivers but this probably represents about 4 to 5 dB).

US reply to the Pecker?

 An American h.f. over-the-horizon radar system (Conus OTH-B) has recently begun a nine-months trial from a trans--mitter site near Moscow (sic) mitter site near Moscow (sic), Maine
with the receiving site for the backwith the receiving site for the back-
scatter signals about 100 miles away. near Columbia Falls. The system is designed to detect moving targets at a range of up to about 1800 nautical miles, using complex digital data processing to
isolate targets from the large amount of sea and land backscatter clutter. Twelve 100 kW transmitters are used on a 24 -hour basis with any of four centre The transmitting aerial array comprises 48 elements, 12 for each of the four bands: a ground screen stretches 750 ft in front of the array to improve lowangle radiation. The USAF is said to have already spent some $\$ 100$-million ment, although the American over-thehorizon radar at Orfordness in England was taken out of commission some years ago and the site turned over to
BBC External Services - Although it is stated that the OTH-B signals will cause much less interference to other services than the notorious Russian "Woodpecker", there
are fears that the growth of such sysare fears that the growth of such sys-
tems, if they prove successful, may become world-wide and will inevitably
affect low-power amateur transmissions. OTH-B signals will have a faster varying from about 20 to 60 Hz and sounding rather like "mains hum". The system is being operated on a "noninterference" basis and one hopes that this will be achieved in practice. A
eur frequencies are to be avoided.

Local courses for

RAE
Evening classes for those wishing to sit again starting soon in many local adult education centres, with enrolment during early September. Among the towns where Courses have been notified to the R.S.G.B. are: Bath, Belfast,
Birkenhead, Birmingham, Bracknell, Gosforth, Turnford near Hoddesdon, Langley near Slough, Manchester, Melton Mowbray; Newport, Northampton, Orpington, Scunthorpe, Stockport,
Walsall and Weybridge. As this list is Walsall and Weybridge. As this list is
probably incomplete, enquiries should be made at local adult education centres.
A second training course for elec-
tronics and amateur radio was held in tronics and amateur radio was held in co-operation of the German national amateur radio society, DARC. There were 29 participants, including students from India and Bangladesh (although amateur licences are not yet available in
Bangladesh).

Around the bands

The IARU Region 1 Executive Committee has recommended that the new kHz (which is expected to become available about 1982) should be for c.w. operation only. This is to enable as many amateurs as possible to make effective use of this band which will be the narrowest of all amateur alloca-
tions. The IARU Conference in 1981 (to be held at Brighton from April 27 to May 1) is expected to set up a working group to consider band plans for the 18 and 24 MHz bands, although these may not several years.
H. L. Wilson, E12W, one of the few European amateurs permitted to use the 50 MHz band, has reported making 1552 transatlantic contacts with 600 October 20, 1979 to December 20, 1979, using a transmitter with an output of about 10 watts and a three-element beam aerial. On December 15 he reports that the m.u.f. was observed to rise to
62.75 MHz . According to Ham Radio, first news
of the initial volcanic eruption at Mount St Helens, Washington on March 27 came from an amateur radio station
operated by a camper on the mountain slope. His dramatic transmission ended: "I'm getting the hell out of here" but he, and two other radio amateurs, were among the missing. Some 100 amateurs
worked with rescue crews and another worked with rescue crews and another
100 at the communications centres: it is claimed that radio proved more effec tive than the telephone.
W. A. Scarr, G2WS, chairman of the Radio Amateur Invalid and Blind Club,
has appealed for a wider understanding has appealed for a wider understanding
and appreciation of the club's aims and activities. RAIBC exists to help handicapped members to participate fully in amateur radio. The club has an RAE tuition course on tape cassettes for
blind candidates and this has recently blind candidates and this has recently
been revised; a number of Datong morse tutors have been donated by friends of the club and are proving successful. Some 50 copies of the club newsletter "Radial" are distributed on tape.

In brief

Kenya has introduced a "type approval" system for amateur radio equipment,
charging a fee of $\$ 150$ which has to be charging a fee of $\$ 150$ which has to be paid again each time any alterations are
made. Attendance at the RSGB National Amateur Radio Exhibition at Alexandra Palace last May was over $6,600 \ldots$ Dates for the ARRA amateur radio exhibition at Leicester have been changed to November 6, 7 and 8... Sixty years ago - summer 1920 - saw
the issue of the first post World War I British amateur licences, including " 2 FZ " as the callsign of the Manchester Wireless Society. . It was August 1920 when the weekly concerts for British on 1000 metres . . . The Queen's Birthday Honours List included the award of an MBE to Roy Stevens, G2BVN in recognition of his work, for amateur
radio . . . Basil O'Brien, G2AMV of radio -. Basil O'Brien, G2AMV of sident of the RSGB . . Although the "Firewheel" scientific satellite on board the ill-fated Ariane launch last May has been recovered from the sea, the Oscar salvaged . . . Forthcoming events include the Scottish Amateur Radio Convention on September 13 and the Welsh Amateur Radio Convention on SepG3WDH in examining tape Suckling, of 432 MHz "moonbounce" echoes has found that they include further "long delay" echoes

PAT HAWKER G3VA

WIRELESS WORLD. SEPTEMBER 1980

allow touch-reading, and "piptones" are given to tell the user
when the controls are operated correctly and when the radio is
scanning At each receivable station, the scanning stops automatically, and the radio has a memory in which up to seven
stations on f.m. and seven sta tions on m.w.I.w. can be stored and rec
tion.
Dimensions of the ICF-M20L weight is 380 g , including batteries. Sony (U.K.) Ltd, 134
Regent St, London Wl. ww308

Wide-range
measuring amplifier Comprehensive measurement of
sound, vibration and voltage is possible with the new wide-range from B\& F voltmeter Type 2610, which l.e.d. displays are incorpor ated for the gain/measuring range and overload indications,
and accurate true r s level detectors plus a max. hold facility enable it
sion voltmeter.
High-pass filer ing system for sound measure

withstanding up to 30 kV , provided that the power dissipation
of the device is not making them particularly suitable for use as high-voltage dividers.
With power ratings of up to
4.5 W the networks 4.bw the networks can be obtained in a resistance range
 use, and a standard tolerance of $\pm 5 \%$, tighter tolerances being
obtainable if required. Other obtalnation in which the net-
applications works can be used to advantage are very low inductance and
pulse systems, accurate feedback puise systems, accurate feedack
controls, measurement systems

Duplicate networs
Duplicate networks are ide
cal in pattern, shape and elec cal in pattern, shape and elec-
trical characteristics, offering a more consistent performance
than can be obtained with disthan can be obtained with dis-
crete resistors. Substrate sizes range from $25 \times 8.5 \mathrm{~mm}$ to
$25 \times 5 \mathrm{~mm}$ $25 \times 50 \mathrm{~mm}$. Welwyn Electric Ltd,
Bedlington, Northumberland Bedlington,
NE22 7AA.
WW311.

Universal vacuumtest fixture Test heads which are in-
terchangeable and a universal receiver, the section upon which the test heads are mounted, are
the main components of this p.c.b. test fixture, the U3000, which holds the circuit under test
in position and against the in position and against the
spring-loaded contacts using a vacuum. It is claimed that the "bed of nails" test-heads can be
changed in a matter of seconds an important feature where production costs are to be minimized in the testng of p.c.bs of varying
nature and size.

$$
\begin{aligned}
& \text { nature and size } \\
& \text { The receiver, }
\end{aligned}
$$

for either 30 or 60° is available
mounting is eithed mounting, is either demountable,
in which case a Cannon 156 way in which case a Cannon 156 way
terminal connector is usually fitted, or semi-permanently installed into an a.t.e. system.
Each spring-loaded contact
consists of a probe which is made from beryllium copper, plated with either gold
a mating socket. Constant contact between probe and socket is ensured by using a patented "biasing-balp construction
which also precludes current passage through the pressure
spring. The contacts are replaceable. The U3000 is made by Pylon
and distributed in the U. and distributed in the U.K. by
Teknis Ltd, Teknis House, Mead-
row Godalmin row, Godalming, Surrey GU7
3 HO . WW312

Industry

 tiometers in either single o tandem-stereo forms, de-nominated Radiohm P20 and JP20 respectively, are manufac ured by East Grinstead Elec
tronic Components Ltd. They ar tronic components Ltd. They are
produced in a choice of 12 different linear and non-linear law patterns ranging from 100Ω to
$2.2 \mathrm{M} \Omega$, and are available in centre-indent, 11 and 21 position
and variations and with either $1 / i$ in or
6 mm plastic spindles. 6 mm plastic spindles.
Standard track-d ratings at $40^{\circ} \mathrm{C}$ are 0.4 W and 0.2 W for linear and non-linear
versions respectively minimum limiting element voltage of 500 V d.c. and insulation breakdown voltage of 100 V a.c. Normal operating torque over
the full 300° rotation is 0.4 Ncm , end stop maximum torque is be-
tween 60 and 80 Ncm , tween 60 and 80 Ncm , dependent upon style, and maximum axia
spindle load is 100 N for 5 sec. Various p.c.b. and hard-wiring
ssind solder tag terminals are also
vailable, as are integral support vailable, as are integral support
brackets, enabling robust assemblies to be achieved. East Grinstead Electronic Components
Ltd, Imberhorn Industrial Estate East Grinstead, Sussex RH19 ${ }_{\text {1RJ. }}^{\text {WW313 }}$

High-accura

modulator
A series of low-cost, high accuracy modulators with up to
$\pm 0.1 \%$ linearity has been inComputer Conversions Corporation model 503 modulator converts d.c. input signals to linear,
proportional a.c. output signals: proportional a.c. output signals.
it accepts $\pm 10 \mathrm{~V}$ d.c., or $\pm 100 \mathrm{~V}$ d.c. inputs and provides a.c. outoutput impedance of 1Ω maxi-

ference line change Any a.c. output voltage can be transfofmers, and the output is short-circuit protected. Gain and tandard features Measuring
 has an input impedance of $100 \mathrm{k} \Omega$ ference input and $\pm 15 \mathrm{~V}$ d.c. mation Ltd, 58 Edgware Way, Ed\&ware,
WW314

PA GROUP \& DISCO UNITS
 WILMS
seake

KITs Fon Magaine desibus. elt.
KITS INCIUDE DRVIVE UNITS,

 Hifi inews Tabor (Jones) with H4 bass bivis

AEPRINTS/CONSTRUCTION DETALIS
OF ABOVE DESIGNS
10p EACH

ALL PRICES INCLUDE VAT@ 15\%

8) SWIFT

OF WILMSLOW
The firm for $\mathrm{Hi}-\mathrm{Fi}$
5Swan Street,
Wilmslow, Cheshire

The New FM/AM 1000swith Spectrum Analyser-we call it the SUPER-S
A portable communications service monitor from IFR, light enough to carry anywhere and good enough for most two-way radio system tests. The FM/AM 1000s can do the work of a spectrum analyser, oscilloscope tone generator, deviation meter, modulation meter, signal generator wattmeter, voltmeter, frequency error meter-and up to five service engineers who could be doing something else!
For further information contact Mike Taylor

IFR precision simulators FieldTech Ltd
Heathrow Airpor Heathrow Airport
ondon Hounslow London Hounslow
TW6 3AF Tel: 01-759 2811 Telex: 23734
FLDTEC G Talls
sopio
Heyco Nylon Hole Plugs snap-lock into panels to provid
quick, neat entrance seals. snap-lock into panels to provide
quick. neat entrance seals. Low
cost.
for hingertip assembles
for holes $/ 11^{\prime \prime}$ t to

Heyco Nylon Snap Bushings convert sharp edges to smooth,
insulated holes quickly insulated holes quickly and
easily. Snap-fit with fingertip
pressure. 44 sizes FREE SAMPLES
FREE SAMPLES
and catalogue on reques

Compact, versatile field service monitors for two-way radio maintenance

CE-50A: FM / AM Field Service Monitor CE-50A-1: FM / AM Field ServiceSpectrum Monitor

Heyco have got it made for cables
Heyco Manufacturing Co. Ltd.,
Uddens Trading Estate,
Nr Wimborne
Nr Wimborne, Dorset BH21 7NL
Tel: Ferndown (STD: 0202) 871411 (4lines Tel: Ferndown STD: 0222.) $871411(4$
Telegrams: HEYCOMAN Wimborne.
Telex: 41408 .
wW - 095 FOR FURTHER DETAILS

Electronic components \&applications
 Use your scissors to keep informed.
 Cut the coupon and subscribe to Electronic Components

 and Applications. Its 64 pages, contain in-depth articles like - Microprocessor applications \bullet TV and radio digital contro- Electronic news gathering $\bullet 30 \mathrm{AX}$-latest TV techniques \bullet AC motor speed control, written by top specialists from Philips, Signetics and Mullard.

Name
Address

Exclusive representative:
Aspen Electronics Limited Communications Equipment and Components 2 Kildare Close, Eastcote, Ruislip, Middlesex HA4 gUR
Telephone: $01-8681188$ Telephone: 01 -1888 1188,
Telex: 8812727

Guess who builds this great

Logic Probe...YOU!

With this easy-to-build Logic Probe Kit from CSC and just a few hours of easy assembly-thanks to our very descriptive step-by-step manual-you have a full performance logic probe.
With it, the logic level in a digital circuit is'indicated by light from the Hi or Lo LED; pulses as narrow as 300 nanosecond either leading edge. You'll be able to probe deeper into logic with the LPK-1, one of the better tools from CSC.

CONTINENTAL SPECIALITES CORPORATION

 SHOP
NOWN
OPEN

Come and see the biggest and best selection of CB radio accessories including:-

TV tUbe rebuilding

 mane

FAIRCREST ENGINEERING LTD.

MANY OTHER TYPES AVAILABLE, INCLUDING
SPECIAL OUALITY \& VINTAGE PLEASE PHONE OR SPECIAL QUALITY \& VINTAGE. PLEASE PHONE OR SEND LIST OF YOUR REQUIREMENTS

Post \& Pacagag 50p on all orders PRICES INCLUDE VAT

CLEARANCE SALE

We are moving to New Premises, and it is necessary to clear most of our existing stock.

THE SALE

Is for ONE WEEK commencing 1000 Hr . Monday, 8th September, 1980 to Saturday, 13th September, 1980.

ANNUAL HOLIDAYS from 27th AUG. ' 80 to 3rd SEPT. ' 80
Orders accepted only from Education \& Government establishments, otherwise cash sales only

For list send stamped addressed envelope.

MARTIN ASSOCIATES (ELECTRONICS) LTD.

34 Crown Street, Reading, Berks.
Tele: Reading (0734) 51074 \& 595853

JUMP TO IT!
 Climb aboard the breadboarding bandwagon with CSC's new WK-1

 bandwagon with CSC's new WK-1wire jumper kit- -just what you've always wanted to make
than ever betofere Here and quicker than ever before. Here, in one
neatly compartmented box, are all
those cifferenty lenths of those different lengths of insulated
hook-up wire you need -25 pieces each, in 14 lengths reanging from 0.1 inch
to 4 inches. What's more, the CSC kit makes
your job even easier by colour-coding all the Your job even easier by colour-coding al
different lengths and providing a quarter
 off and bent through 90°. So CSC je jumper wiresce come
ready to plug straight into your quick-test sockets, bus strips
breadboard system. No more fiddling breadboard system. No more fidd ling around with' wire cutters,
stripeers or pliers - everything ou need in strippers or pliers - everything you need in one box. Take the plung
right now by filling in the CSC coupon.
CSC (UK) Ltd. Deppt.7RR, Unit 1. Shire Hill Industria Estate. Saftron Waide
WK-1] Jumper Kit 55.00 Net.
I enclose cheque/Po for E ... Pease deduct \mathbb{E} p postase from each
or debit my Barclay card, Access, American Experss card

I NAME,
Conimenal sscicans comooomion
$\xrightarrow[\text { Continental I Specialties Corporation (UK) Limited, Dept. } 7 \text { PR }]{\text { FRE catick }}$
TOMORROW'S TOOLS TODAY
wW - 022 FOR FURTHER DETAILS

100

You should attend

14, 15, 16 OCTOBER 1980
METROPOLE CONVENTION CENTRE \& THE BRIGHTON CENTRE, BRIGHTON, ENGLAND
. the 13th annual event devoted to total electronics production technology

Because INTERNEPCON/UK ' 80 is the only exposition in Europe this year, presenting displays of equipment and systems for all areas of production, processing and

Exhibits will include chemicals, materials, pcb's, tools, connectors, component insertion equipment, tes ystems; production equipment and associated hardware
-- plus --

The most comprehensive conference programme with lechnical sessions covering development, packaging, processing and testing in all areas of electronics manufacturing and applications.

FOR ADVANCE INFORMATION COMPLETE AND RETURN THE COUPON - NOW

Name
Company
Address

ZPlease send FREE extibition ticket
QPlease provide conference programme INTERNEPCON/UK 80
WW - 078 FOR FURTHER DETAILS

DEVELOPING A

 MICROSYSTEM?| | Then pl a Softy into you ROM socket. |
| :---: | :---: |

SOFTY provides:

- TV map of memory contents (Hex)
- Keybard entry with assembler facility
- Seriallpacallel Inputs (e.9.9. R5232)
- EPROM programming (2778, 2716, 2732, etc.) - Cassetet tape storage

SOFTY-Whatelse do you need?

Ww- 082 FOR FURTHER DETALLS
WW-062 FOR FURTHER DETAILS

VERO SYSTETS
362 Spring Rd, Sholing, Southampton, Hants. SO9 5QJ 362 Spring Rd, Sholing, Southampton, Hants. SO

Always have a panel of experts.

Assembling a front panel and PC board has alway been very time consuming. By using our new FF system, it enables you to be your own expert and build a superbly engineered front panel, quickly and efficiently. The fully interlocking system of L.E.D.s, toggle switches, push button switches, cermet potentiometers, test jack sockets and other components are all built to a standard format and can be fitted into your own custom built system or one of our front panel units. Send now for our catalogue, and start assembling your own panel of experts.
MANUFACTURED IN GERMANY BY West Hyde Developments Limited, Unit 9 , Park Street
WW -053 FOR FURTHER DETAIS

Happy Memories

4116 200ns
2114 200ns £3.75 4116 150ns $\begin{array}{lllr}\mathbf{2 1 1 4} 200 \mathrm{~ns} & £ 3.45 & \mathbf{2 1 1 4} 450 \mathrm{~ns} & £ 2.95 \\ \mathbf{2 7 0 8} 450 \mathrm{~ns} & £ 4.95 & \mathbf{2 7 1 6 5} \text { volt } & £ 10.95\end{array}$ $£ 5.50$ MEMOREX mini discs soft sectored - with FREE library case $£ 19.95$ per ten.

WE'VE MOVED!!

All prices include VAT postage on orders below $£ 10$

Access \& Barclaycard All orders to: Dept. WW
HAPPY MEMORIES Gladestry
Kington
Herefordshire HR5 3NY Tel. (054422) 618

WIRELESS WORLD, SEPTEMBER 1980

FUSES Quck a acting, Anti surge. Ceramic, from $\mathbf{£ 2 . 8 0}$ per 100 £8.50 per 100 .
PCB Guides, self-fixing from $\mathbf{£ 4 . 8 6}$ per 100
ELTMA knobs \& acce AL \& Iskra $1 / 8 \mathrm{~m}$ - 2 w , from $£ 4$ per 1,000 CLMA knobs \& accessories. Crimp (solderless) T TE
CABL
SLEEEVESES Markets from $£ 1$ per 1,000 .
SLEEVIALLE. Neoprene, PVC, Silicone rubber-all colours. SPECIALLY REDUCED PRICES for C.f. resistors, Polystyrene
Capacitors etc, for values on which we are overstocked. Special list

PBRA LTD Hofieda 36
Golden Green, Tonbridge, Kent TN11 o
WW - 057 FOR FURTHER DETAILS

XVIII INTERNATIONAL IMAGE, SOUND AND ELECTRONICS SHOW

TO SEE AND HEAR

4 LARGE EXHIBITION PALACES DEALING WITH 1 \}

INFORMATION: Avda. M. Cristina, s/n. BARCELONA-4 (Spain) Tel. 2233101

FREQUENCY COUNTERS—OFF/AIR RECEIVERS

full range av

Full range available to replace 1.5 volt dry cells and 9 volt PP type
batteries, SAE for lists and prices. $£ 1.4$ for booklet, "Nickel Cadium Power,"' plus catalogue.

$$
\begin{aligned}
& \text { " Write or call at: } \\
& \text { NDWELL PLANT L }
\end{aligned}
$$

SANDWELL PLANT LTD
2 Union Drive, Boldmere
2 Union Drive, Boldmere
Sutton Coldfield, West Midlands 021-354 9764
See full range at TLC, 32 Cräven street, Charing Cross, London
NEEDSNO EXMMOMATHON
You don't need to look too closely
clips to see that they provide instant.
connection to dual-inline packaged components. Use them on ICs,
networks or relays to provide a integrity interface for 'hands-off' testing with oscilloscopes, signal sources, logic analysers and other instruments. Contact spacings designed
to suit all standard IC packages, CSC P to suit all standard IC packages, CSC Proto-Clips feature ontacts, and clip notches to prevent corroding nickel-silver testing. Make contact with CSC Proto slippage during filling in the coupon.
CSC (UK) Ltd. Depot. 700
Essex CB113AO. Teleph
【
I enciose cheque/PO for Eer
or debit my Barclaycard, Access, American Express card

Will be in the post immediately.
| address
CREE catalogue tick box
1 Continental Specialities Corporation (UKK) Limited. Dept. 700
LOMORBOW'S TOOLSTODAY

Simply ahead...

POWER AMPLIFIERS

ILP PRE-AMPS ARE
COMPATBLE WITH ALL COMPATIBLE WITH ALL
ILP POWER AMPS AND PSUS

POWER SUPPLY UNITS

ILP Power Supply Units with transformers made in our
own factory are designed specifically for use with ILP

PSU $30 \pm 15 \mathrm{~V}$ at 100 mA to dive up to $12 \times \mathrm{HY} 6$ or 6 $\underset{\text { xHY66 }}{4.50}+$ £0. 68 VA HE FOLLOWING WILL ALSO DRIVE ILP PRE-AMPS
PSU 36 for 1 or 2 HY 30 's
E8. $10+$ E1.22VAT he foll
SU 50 for 1 or 2 HY50's Su 50 to 1 HY 20 O SU 70 for 1 or 2 HY 120 S E13.61 + E2.46 VAT PSu 90 or 1 HY200 PSU 1801 HY 400 or $2 \times$ HY20
£13.61 $+£ 2.04$ VAT $£ 23.02+£ 3.45$ VAT
available also from watford electronics, marshalls and certain other selected stockists.

this time with two new pre-amps

HY6 mono HY66 stereo

 Whave simplified connections, and dimpoved derformance figuras al round.
Our new preaps are shor-ciricuit and polarity protectede; mounting boards
are available tosing Sizes - HY6-45 $\times 20 \times 40 \mathrm{~mm}$ HY66 Circuits provide $\pm 12 \mathrm{~dB}$ cut and boost. Inputs Sensitivity - Mag PU -3 mV . Mic-selectable 1.12 mV All others 100 mV Tape O/P 100 mV
Main o/P -500 mV : Frequency response - DC to $100 \mathrm{KHz}-3 \mathrm{~dB}$

NO QUIBBLE
5 YEAR GUARANTE 7. DAY DESPATCH ON ALL ORDERS BRITISH DESIGN AN MANUFACTURE

- ALL U.K. ORDERS DESPATCHED OSI OMIY UN HOW TO ORDER USING FREPOST Simply fill in order coupon whith payment or
credit card instructions. Post toaddenss as elow butd do instrot stams. Post too oaddress as

Z \& I AERO SERVICES LTD. Head Office: 42-44A-46 WESTBOURNE GROVE, LONDON W2 5SF Tel. 7275641 Telex 261306	
SPECIAL OFFER OF BRAND NEW USSR MADE MULTIMETERS	
	TYPE U4324 RICE complete with test leads and fibreboard storage £9.50: Packing and postage (U.K.) £1.20
TYPE U4323 COMBINED WITH SPOT FREQUENCY OSCILLATOR PRICE, in carrying case, complete with leads and manual $£ 8.00$ Packing and postage (U.K.) £1.00	
THIS OFFER IS VALID ONLY FOR ORDERS ACCOMPANIED BY REMITTANCE WHICH SHOULD INCLUDE DELIVERY CHARGES AS INDICATED AND 15\% V.A.T. ON THE TOTAL	our 1980 Catálog ue/price list of valves, semiconductors and PASSIVE COMPONENTS IS AVAILABLE. PLEASE SEND P.O. for £0. 60 FOR YOUR COPY

TRANSCENDENT DPX

DIGITALLY CONTROLLED, TOUCH SENSITIVE, POLYPHONIC, MULTI-VOICE SYNTHESIZER Another superb design by synthesizer expert Tim Orr - published in Electronics Today International

COMPLETE KIT ONLY £299 +vat

POWERTRAN
MANY MORE KITS ON PAGE 105. MORE KITS AND ORDERING INFORMATION ON PAGE 101

TRANSCENDENT 2000 SINGLE BOARD SYNTHESIZER
LIVE PERFORMANCE SYNTHESIZER DESIGNED BY CONSULTANT TIM ORR (FORMERLY SYNTHESIZER DESIGNER FOR EMS LIMITED) AND FEATURED AS A
CONSTRUCTONAL ARTICEE ENECCTRONICS TOOAY NTERNATIONAL.

COMPLETE KIT ONLY £168.50 + VAT!

[^2]

110
WIRELESS WORLD, SEPTEMBER 198

NEW PRICES ON MEMORIES

STRUTTS prices down again
$\begin{array}{lrrr} & 1+ & 50+ & 100+ \\ 2114-300 \text { ns } 1 \mathrm{~K} \times 4 \text { SRAM } & 3.33 & 2.77 & 2.40\end{array}$
$\begin{array}{lllll}2114-300 \text { ns } 1 \mathrm{~K} \times 4 \text { SRAM } & \mathbf{3 . 3 3} & \mathbf{2 . 7 7} & \mathbf{2 . 4 0} \\ 4116-200 \mathrm{~ns} 16 \mathrm{~K} \times 1 \text { DRAAM } & \mathbf{3 . 6 0} & \mathbf{3 . 0 0} & \mathbf{2 . 6 0}\end{array}$ $\begin{array}{llll}2708-450 \text { ns } 1 K \times 8 \text { EPROM } & 4.39 & \mathbf{4 . 0 0} & \mathbf{3 . 7 0} \\ 2516 \text {-sv } 2 K \times 8 \text { KPROM } & \mathbf{9 . 9 9} & \mathbf{8 . 6 2} & \mathbf{7 . 4 7}\end{array}$ $\begin{array}{lllll}2532-450 n s & 4 K \times 8 \text { EPROMM } & 1.99 & 8.62 & 7.47 \\ 29.90 & 28.40 & 24.70\end{array}$

Please add 50p Postage and 15% VAT to all orders.

STRUTT LTD.

(ELECTRONIC COMPONENTS DISTRIBUTORS)
3C Barley Market Street
Tavistock, Devon PL19 0JF
Tavistock, Devon PL19 0JF
Tel. Tavistock 0822-5439/5548
Telex 45263

POSITIVE RESIST

 COATED LAMINATE Direct from MANUFACTURERfor high quality printed circuit production compatible with all positive working systems
Ex Stock Delivery

PRICE	SINGLE	DOUBLE
EACH	SIDED	SIDED
$4 " \times 6$ "",	$£ 0.99$	$£ 1.08$
$6 " \times 88^{\prime \prime}$	$£ 1.23$	$£ 1.38$
$8 " \times 9 "$	$£ 2.59$	$£ 2.93$
All packed individually.		
Cash with order only.		
All prices inclusive of V.A.T. and Delivery.		

KELAN ENGINEERING LTD
27-29 Leadhall Lane, Harrogate, North Yorks. HG2 9NJ.

Post-HNC Endorsement in Television Technoloyy

A postgraduate endorsement course in Television Engineering,
recoognised by the IEE, for students of engineering at HNC or degree level.
$18.00-21.00$ Wednesday evenings
Course fee: $£ 14$
23 September 17.30-19.00
24 September 17.30-19.00
urther dotails from and enrolments at: The Registry chool of Engineering and Science
CL, 115 New Cavendish Street, W1M BJS

MPA 200100 WATT (rms into 8Ω) MIXER / AMPLIFIER

CHROMATHEQUE 5000
5 CHANNEL LIGHTING EFFECTS SYSTEM

COMPLETE KIT ONLY £49.50 + VAT!

SYNTHESIZER KITS ON PAGE 103. MORE KITS AND ORDERING INFORMATION ON PAGE 101.

DE LUXE EASY TO BUILD LINSLEY HOOD
75W STEREO AMPLIFIER $£ 99.30$ + VAT
This easy to build version of our worl-wide acclaimed. TVW ampilifer kit based upon
circuit boards

BLASK NOLS
MUSIC EFFECTS DEVICE - AS FEATURED
IN ELECTRONICS TODAY INTERNATIONAL!

COMPLETE KIT ONLY $£ 49.80$
De Luxe version (dual delay line system) also
Cabinert tize $10.0^{\prime \prime} \times 8.5^{\prime \prime} \times 2.5^{4 \prime}$ (roar) 1.8^{4} (front)

COMPLETE KIT
ONLY £49.90 + VAT! MATCHES THE
HROMATHEQUE 5000 PERFECTLY!

$\mathbf{T 2 0} \mathbf{+ 2 0}$ 20W STEREO AMPLIFIER $£ 33.10$ + VAT

OEM - let Drake Transformers advise you on a component specification and design to solve that special problem. Preproduction prototypes and development undertaken as necessary.
Well known over a quarter century for personal service and high-quality products, Drake specialise in the design and manufacture of transformers and other wound components for large and small quantity production.

Expertise and service put DRAKE TRANSFORMERS in a class of their own.

DRAKE TRANSFORMERS LIMITED
South Green Works Kennel Lane Billericay Essex CMII 2SP
Telephone: Billericay (02774) 51155 Telex: 99426 (prefix Drake)

PRE-AMP: KIT £70.95, BUILT £80.41

POWER AMPS: KITS FROM £87.28, BUILT £131.27

 45W channel: : kit, P2, $\mathbf{P 8 7 . 2 8 ;}$ built, 202, £131.27
$110 \mathrm{~W} /$ channel: kit, P4, $£ 109.42$; built, 204, $£ 153.42$
POWER AMP MODULES AND SUPPLIES

1504, 1508, c55.79	M854, 226.00
M2308, 553.96	

\star EXCELLENT TRADE PRICES \star

To obtain further details of any o the coded items mentioned in the Editorial or Advertisement pages of this issue, please complete one or more of the attached cards. entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them lirect in due course. Cards posted irect in due course. Cards rom abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters
If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom of this page. You may also apply to the agent nearest to you, their address is shown below.

OVERSEAS SUBSCRIPTION AGENTS

 Batilem:Agancoe ot
 Conada: Oovis Cicturution

Onnlark: Dansk
 O. 11103 K Kobenhaun.

 Aibisou,
 Sinth, KKon Grome: Hathenic
 Noas Smymi, Grooce. Holland: Van Ditmat.N.V. Antas Intionational Book
 Combion Ext, Madamo sorize. Thenizan
 Po. Box 828 g, Toil Aviv
 on

Postage will

SINESS REPLY SERVICE icence No. 12045
WIRELESS WORLD, PRODUCT REPLY SERVICE, 429 BRIGHTON ROAD, SOUTH CROYDON, SURREY CR2 9PS

```
Wireless World:
```


Subscription Order Form

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to:

Subscription Manager,

IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH;
England

Enquiry Service for Professional WIRELESS WORLD Wireless World, September 1980 WW 069
Readers ONLY.

WW...	WW.... WW....	Please arrange for me to receive further details of the products listed, the appropriate reference numbers of which have been entered in the
WWN.		space provided.
WW...	WW.... WW.	
ww...	ww.... ww..	Position in Company
WW. .	ww.... ww..	Name of Company
WW. .	ww.... ww..	Address
ww. . .	ww.... - ww.	
WW...	ww.... ww..	
Ww ...	ww.... ww..	Telephone Number
ww ...	ww.... Ww..	
WW ...	ww.... ww...	Nature of Company/Business .
WW...	ww.... ww..	No. of employees at this establishment.
ww...	WW.... WW...	
ww...	Ww.... ww..	
WW. .	WW.... Ww ...	ID FOR SIX MONTHS ONLY

Wireless World Subscription Order Form Wireless World, September 1980 wW 069

UK subscription rates
1 year: $£ 9.00$ USA \& Canada subscription rates 1 year: $\$ 31.00$
Overseas 1 year: $£ 12.00$
Please enter my subscription to Wireless World for 1 year
I enclose remittance value... ${ }^{\text {made payable to }}$
IPC BUSINESS PRESS Ltd.

Name...
Address \qquad

■DATA PRECISION
Model 935

$31 / 2$ digit, LCD display DIGITAL MULTIMETER

HANDY-easy to hold, to carry, to use, to read. Always at hand to make difficult measurements easy.
VERSATLLE -all the functions and ranges you need... 29 in all: volts and amps, a.c. and d.c., switchable Hi and Lo ohms.
TOUGH-built to take the rough and tumble
of field sevice and survive normally disasof field service and survive normally disas-
trous overioads the 935 will stay in cal. PRECISE-basic 0.1\% d.c. accuracy-better PRECISE-basic 0.1% d.c. ac
than many bench models!
VISIBLE-big, clear, high contrast $31 / 2$ digit VISIBLE-big, clear, high contrast $31 /$ digit Characters.
EXPANDABLE-accessories extend measurements to $1000 \mathrm{~A}, 40 \mathrm{KV}$, r.f. at 700 MHz or temperature from -60 to $+150^{\circ} \mathrm{C}$. INEXPENSIVE-the 935 has the lowest price tag of any high performance hand-held
DMM at £g4 U.K. mainland delivered exc. DMM at £94 U.K. mainland delivered exc. VAT. It uses a low cost PP9 battery which can give up to 200 hours use.
See why your next multimeter should bea Data Precision 935!
Get the leaflet now from:
… Farnell
International
FARNELL INTERNATIONAL INSTRUMENTS LIMTT FARNELL INTERNATIONAL INTTHUMENTS LIMTT
WETHERYY WEST YORKSHIIE L LS22 LDHH WETHERBY. WEST YORKSHIRELS22 4DH
TEL:O937 63541- TELEX 557294FRAIITG
OR LONDOO OFICE-TEL: 018647433

Why Scopex?

There's a range of answers.

There's something every one of our scopes has in common. Great accuracy, tremendous reliability ricing, plus free delivery on UK mainland.

Take the new 4D-10B. The fully stabilised power supply gives 3% accuracy. There's a full XY facility for brightening or dimming the trace, 10 MHz scan at full bandwidth over the full screen area, trace locate and TV field trigger. At $£ 210.00^{* *}$ it's astonishing value.

Or the 4D-25. A dual trace model with DC-25MHz bandwidth and $10 \mathrm{mV} / \mathrm{cm}$ sensitivity. Signal delay allows you to trigger from and see the leading edge of any signal. Trigger level and slope are selected on one dual function control. 3% accuracy
and still only $£ 360.00 \%$.

Plus the 4S6 single beam 6MHz bandwidth model with easy to use controls. 10 mV sensitivity and timebase range of 1 us to $100 \mathrm{~ms} / \mathrm{cm}$. Lightweight, compact and a very good price. $£ 144.00^{*}$.

Return the coupon for full details of the range that gives you a lot more scope.

RfDIO fiND TELEVISION SERVICNG 1979-80 MODELS

Editor
R N Wainwright, T.Eng. (CEI),
F.S.E.R.T.

The latest volume in the RADIO AND
The latest volume in the RADIO
TELEVIION SERVICING series -
\star Bigger than ever - over 900 pages
\star Bigger than ever - over 900 pag
\star Quick reference to hundreds of
\star Quick
\star Essential service information -
Television (Colour and Monochrome) Television (Colour and Monochrom
Radio - (Portables, Clock Radios,
Cassettes, In-car, Unit Audio, Record
Passetres
¿ Latest design techniques described
\star Receiver adjustment and alignment
\star Manufacturers' recommended
modifications
Makes covered in this volume: Television Receivers: Bush, Crown,
Decca, Ferguson, G.E.C., Grundig, Hitachi, I. T. . Mitsubishi, Murphy, Philips, Plustron, Pye, Sanyo, Sony, T.C.E., Telefunken Teletoto, Ullrad
Redio Receive
 Sony, Ultra, Walthom
An essential reference book for all service engineers
£14.50 14 August
Special price for six-volume sef $£ 58.00$ (including p\&\&p)
Consisting of vols. $74 / 75,75 / 76,76 / 771.77 / 78,78 / 79,79 / 80$ Previous volumes still available individually
From booksellers or, in case of difificulty, please use the form From be
below.
To: The Sales Dept, Macdonald Futura Publishers LId, 8 Shepherdess Walk, London N
of RADIO AND copy (post paid). I enclose my chequelPO for \mathcal{E}. 14.50 per (made payable to Macdonald futura Publ ishers Ltd) or debit - my \square Access \square American Express \square Barclay Card

My card number
Signature
GIROA/CNo. 205/4221
GROA/C No. 205/4221
Address

Macdonald A Division of Macdonald
ww - oog for further details

MARKING PENS

with fluorescent colour inks

A range of marking pens is available in ten colours for permanent and removable markings. The inks are
highly fluorescent, electrically non-conductive and highly fluorescent, electrically non-conductive and
can be used for marking metal, plastic, fabric or can be used for ma
through an oily film.

STANDARD PNEUMATIC MOTOR CO.
35 Stafford Road, Weston-super-Mare, Avon
BS 23 3BN
Tel. No. 0934417803 . Telex 449460
wW-110 FOR FURTHER DETAILS

World-beating Oscilloscope Offers Electronic Brokers
49-53 Pancras Road,
Lel: 01-837 7781. Telex: 298694
$W W-102$ FOR FURTHER DETAILS

Get a great deal from
|OISAOIIS
We are old established specialist electronic component distributors carrying a very wide range of quality stock.
We are franchised distributors for Arrow Hart switches; Mullard; National; Siemens; Texas; Thomson; CSF etc.
Send for our latest 60 page catalogue. post paid to private individuals.
New lines not yet in catalogue are
new range Sinclair (Thandor)
meters; Crimson Elektrik High Fi
Modules; Rechargeable Nickel/
for details.
A. Marshall (London) Ltd., Kingsgate House,
Kingsgate Place,
Kingsgate Place,
London N.W. 6 4TA
Industrial Sales: 01-328 1009
Mail Order: 01-624 8582
Retail Branches: London: Glasgow: Bristol

 $100 \mu \mathrm{~N}$ resolution. $\mathrm{DC} / \mathrm{AC}$ current $200 \mu \mathrm{~A}-2 \mathrm{~A}, 0.1 \mu \mathrm{~A}$ resolution.
Resistance $2000 \Omega-20 \mathrm{M} \Omega, 0.12$ resolution Low resistance 2Ω and 20Ω, $1 \mathrm{~m} \Omega$ resolution Conductance ranges $2 \mathrm{mS}-20 \mathrm{~L}-2 \mathrm{~s}-200 \mathrm{~s} \mathrm{~S}$. 2Ω and 20Ω

Electronic Brokers
London NW1 2QB
el: 01-837 7781. Telex: 298694
W - 112 FOR FURTHER DETAILS

TrustF.C.Lane tooffer low planar cable prices
Spectra GREY ZIP Planar Cable
10, 14, 16, 20, 24, 25,
$26,34,37,40,50,60$, and 64 way all at 80p
per conductor per 100 ft Roll Discounts avaiable tol argre users. Full range of 10
connectors \& cables. Ask for catalosyue.

F.C.Lane Electronics Ltd.

Slinfold Lodge, Horsham Tel: Slinfold 790661 Telex 87530

TrustFC.Lane!

LOW COST -
 HIGH RESULTS

Major Price breakthrough on 6 MIL Pink Poly

Why pay more for the same results? Our Pink Poly bags end the hazard of static spark discharge in handling and packaging of sensitive electronic components.
44 Standard sizes, MSClBly Anti-Staticl
Example:
$8 \times 8 £ 111.07 / 1000$ $10 \times 12 £ 173.47 / 1000$ $13 \times 16 £ 217.78 / 1000$

Other sizes and quantity prices available on request.

CAVAC SYSTEMS LTD Unit 15, Suttons Industrial Park
London Road, Earley, Reading, RG6 1 AZ Tel: (0734) 669663 Telex: 849286

The SW-M Mini Gas Soldering Iron now from KAM

 flameless and ideal for fast soldering anywhere Using only ordinary gas lighter fuel and giving 4 hours continuous use for many applications. There is no danger of electric current leakage and with flameless combustion there is negligible risk of fire. Soldering iron tip temperature is adjustable. Models available include 20W, 30W, 40W and 60W (wattage equivalents).For full details ask for Bulletin No. 4.

KM

Kam Circuits Limited, Porte Marsh Road, Calne, Telephone: (0249) 815262 Telex: 444218 ww - 077 FOR FURTHER DETAILS
\longrightarrow

Give for those who Gave

WIRELESS WORLD, SEPTEMBER 1980

12-MONTH WARRANTY

All Second User Test Equipment is fully guaranteed for 12 months unless otherwise stated.

WATANABE
6 Channel Chart Recorder MC 641 £2250
YOKOGAWA
Chart Recorder
SIGNAL SOURCES
HEWLETT PACKARD

OSCILLOSCOPES

410075 MHz Portable Dual Trace, Delayed
Only $£ 450$ HEWLETT PACKARD.
 MARCONI INSTRUMENTS

I=二三 49/53 Pancras Road London NW12QB Tel:01-837 7781. Telex 298694
Hours of Business: 9 a.m. 5 p.m., Mon.-Fri. Closed lunch $1-2$ p.m. C m copy of our trading conditions is available on reauest.
Add 15% VAT to ALL PRICES.

Electronic Brokers No. 1 in Second User Minis \& Peripherals

CENTRONICS 101A

GE TERMINET 1200 RO

DEC PDP $11 / 34$ Processor.

EMI MONITOR
 LOW COST PRINTER OFFER
 Keyboard or electronics. 64 upper case ASCLII, 10cps.
pinted platen. Ideal for the electronic hobbyist. ONLY
\&85.00 BALL MIRATEL $9^{" \text { ". Monitor with cass including space }}$
for keyboard. Integral power supplies included. Requires separate horizontal \& vertical video input
 DATA GENERAL model 1210 CPU with $4 K$ core each DIGITRONICS P135 paper tape punches 35 cops.
Solenoid device with $27 V$ voc coil
 SHUGART SA400 Mini-floppy disc drive - BRAND
NEW SHUGART SAB00 $\boldsymbol{B}^{\prime \prime}$ Floppy disc drive - BRANSNEW TALLY 1602 MATRIX PRINTER, Parallel In Inut.
Upper/ Lower case. Tractor feed, as new
E995.00

MISCELLANEOUS

İ末三 49/53 Pancras Road London NW12QB Tel:01-837 7781. Telex 298694

ELECTRONIC BROKERS LTD

 VDU PRICES SHATTERED

Hazeltine H-1000
The low, low priced teletypewriter-compatible video display terminal, offering your choice of
transmission speeds up to 9600 baud as well as parity generation and checking.
Specification Specification
SCREEN SIZE SCREEN SIZE $-12^{\prime \prime}$ diagonal.
SCREEN CAPACITY -960 characters; 80 per line $\times 12$ lines.
CHARACTERS -5×7 Dot Matrix; 625 -line CHARACTER SET - 64 ASCII alphanumerics and symbols,
KEYBOAR - TTY format. KEYBOARD - TTY format.
INDICATOR - Powerion. Parity Error. PARITY - Parity error indicated by Parit Light and -question mark (?) displayed in cha-
racter position racter position.
TRANSMIISSION - Asynchronous. Switch selectable for any two standard rates up to
960 obaud. OPERATING MODES - Full / Half Duplex. MEMORY - High Speed MOS refresh.
STANDARD INTERFACE - CCITT V- 2 (EIARS-232 B / C).
REFRESH RATE -50 fields per second. REFRESH RATE - 50 fields per second.
When ordering please specify your choice of When ordering please specify your choice of
switch-selectablebe baud rates.
Standard: - Either A)

110/300 baud | Standard: - Either A) $110 / 300 \mathrm{bau}$ |
| :--- |
| or B) $300 / 1200 \mathrm{bau}$ | Optional: A combination of any 2 of the fol

lowing transmission speeds can be provided a a surcharge of $£ 25.000,600,900,900,1200$
$75,110,150,200,300,60,990011800$

Hazeltine H-2000

STANARD INTERFACE - CC ITT V- 24 (EIA
RS-232 B/C)
REMOTE COMMANDS - Insert/delet Line,
REMOE COMMANDS - Insert/deletee Line,
Clears Screen, Clear Foreground Data Only. Home
Cursor, Addaess

Hazeltine MODULAR ONE The Hazeltine Modular One termin offers the full range of termina
performances - from simple teletypewriter compatibility to enhanced editing and polling capabilitites.
The Modular one is supplied in two different versions. The BASIC MODEL
provides the fol provides the following features: $\star 1,920$
character display $(80 \times 24) \star 12$-inch Character display (80×24) $\star 12$-inch
bonded \star Incremental and absolute cursor positioning. \star Dual video intens $\star 11$-key numeric pad \star Movable
keyboard \star Choice of 8 transmission \star eyboard \star Choice of 8 transmission
rates up to 9600 baud \star Communication interfaces: EIA RS- 232 and current loop
\star Choice of block blinking underscore \star Choice of block or blinking underscore
cursor \star Choice of white-on-black or cursor $\begin{aligned} & \text { Choice of whit-on-black or } \\ & \text { black-on-white display representation. }\end{aligned}$
Optional:
Lower Case
Printer Port (parallel)
Printe
Printer Port (serial)
EIA Data Cable
Remote Edit
Current Loop Interface
Synchronous Interface
External Baud \& Parity
External Baud \& Parity
Switch
Also available: EDIT MODEL
POLLING MODEL
$£ 35.00$
$£ 70.00$

$£ 77.00$
$£ 70.00$
75.00

£15.00
P.O.A.

126

A्土 COWPUUTER WWREFIOUSE

MOSTEK, INTEL, NEC, MOTOROLA IC. PRICES SLASHED!
 equipment enables us io offer the
following chios at never, and we mean sooss never to be repeorated prices. cen

 AII Alul spec. and guranteed SEMICONDUCTOR EMICONDUCTO
'GRAB BAGS'

 MUFFIN FANS

A

ICL TERMIPRINTER 300 BAUD TERMINALS 300
$\star_{\text {2716 Sing }}^{\text {RAM AND EPROM }}$ 2716 Thre erail EPROMS
$411616 \times \times 1200$ n s RAMS 8 for
$64 \mathrm{~K} \times 8$ DYNAMIC/STATIC RAM CARDS

\qquad

Min

\section*{| f10.25 |
| :---: |
| f 828.50 |}

 POWER SUPPLY UNITS

\star LOW PRICE CHASSIS \star

$\mathbf{f} \mathbf{2 7} \mathbf{.}^{50+\text { P.P. } .1 .85}$

WIRELESS WORLD SEPTEMBER 1980
CONVERT THIS UNITTOA
SUPER BATTERY CHARGER

$\underset{\text { 6/12 }}{\text { STEstition with waditional where the }}$

INFRA RED IMAGE
CONVERTER type 9606 CONVERTER type 9606
(CV 144)

$$
\begin{aligned}
& \text { £12.50 each pap 75p } \\
& \text { Intra Red Lamps also acverised }
\end{aligned}
$$

blue thermal paper

Thit $\times 1.56$

NEW $\star \star \star \star \star$ Star Buys $\star \star \star t *$ FROM GASIO

 parallel ports: 8 K BASLC, NAS
monitor. E280 built and tested.
Firmware \& MOS ICs

Floppy disc system
Double sided double donsity
$51 /$ sin disc disc giving
 CPM E_{80}.
Yystem 80 housing
High trenghth 6 PRoulding
Accepts $12 \times$ Nascom 2 CPU board, four 8×8
.

xpansion Boards" (in
 High Resolution Program mable Graphics $£ 90$
High hesolution Colour add on $£ 37.50$
Silour Board Kit Colour Board Kit $£ 140$

 (20)

\author{

Lower case pack, incl. VAT
Chunky Graphics Pack, incl. VAT
$£ 10.90$
$£ 7.50$

} $\begin{array}{ll}\text { 20 Way Keypad incl. VAT } \\ \text { Mini-mother board, incl. VAT } & £ 11.50 \\ \mathbf{£ 9 . 9 5}\end{array}$ SEND FOR COMPLETE COMPUTER BROCHURE FREEPOST TO ADDRESS BELOW

noccom-

NASCOM PRODUCT LIST + VAT

PITO intercoinnect only for $1 / 0$ boarcd
Conos
 Nascom 19 "
fack mounting card frame
for nod

 LEAP L.2.ape and docucumennatation for

Export Orders deduct VAT, but add 5% carriag.
Official Export $\&$ Educataional Orders welcome.
Our Telee 26284 Mon Ref

Computrat Kit

London W2 1 ED,$~$ | Tet Kii Division |
| :--- |
| 2. 1ED, Englan | 404 Edgw

WIRELESS WORLD, SEPTEMBER 1980
${ }^{130}$ U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

WIRELESS WORLD, SEPTEMBER 1980
131

132

WW - 096 FOR FURTHER DETAILS

ANY MAKE-UP OR COPY
QUERIES CONTACT
JOHN GIBBON
OR BRIAN CHAPMAN
$01-2618353$

WIRELESS WORLD, SEPTEMBER 1980

SUPER BARGAIN TUNER OFFER Brand new by famous manufacturer. MW/LW/FM Tuner and ned mosfet front end, integrated circuit I.F. strip, and phase locked loop stereo decoder chip.
Stabilised power supply and rectifier on board only requires 19 V
 Supplied complete with circuit diagram and ferrite rod aerial. $F M$
section fully aligned and tested before despatch: Fantastic value at
ONLY $£ 9.99$ plus VAT. P.P. $£ 1$. section fully aligned and tested be
ONLY £9.99 plus VAT. P.P. $£ 1$.

LENCO CASSETTE DECKS
AND MOTORS
We have obtained a large quantity of Lenco decks and motors.
Decks include the following types: CRV, FFR, SPFF, Mini-TT and Decks include the following types: CRV, FFR, SPFF, Mini-TB and
Mini-S. There are also a few solenoid controlled decks and some dual Capstan three head units.
The motors include various $A C$ and $D C$ types. All margoing for silly prices.
Let us know your requirements.

CASSETTE HEADS

Wo aro the ectual imponerars of theot heads and in
We terve that due Alt prices phus VAT

Over $50-\mathrm{E} 1.50$
Please send 9×4 SAE for lists giving fuller details and price breakd

LINSLEY-HOOD 30 WATT AMPLIFIER

The very latest amplifer design to be published and in our opinion the best yet. Thi

STUART TAPE CIRCUITS

Advertisements accepted
up to 12 noon Monday, up to 12 noon Monday, issue, subject to space being issue, subje
available.

DISPLAYED APPOINTMENTS VACANT: $£ 12.00$ per single col. cent
LINE advertisements (run on): $£ 2.00$ per line, minimum three lines. BOX NUMBERS: $£ 1$ extra. (Replies should be addressed to the Box Number in th
advertisement, c/o Wireless World Dorset House, Stamford Street, London SE1 9 , PHONE: Anthony Hadley, 01-261 8508.
Classified Advertisement Rates are currently zero rated for the purpose of V.A.T.

Land a good job...

Radio \quad... Your $\begin{aligned} & \text { basedjob, herer'swhereyoullfind interesting work, jobssecurity, } \\ & \text { good money, and the opportunity to enioy all the comforts of }\end{aligned}$
Radio Officer's qualifications could mean a lot 6 here on shore.

Preferably you should have some sea-going experience. 3 years's service this figure rises to around $£ 7,087$. (If you a ar between19 and 24 yourpay on entry will vary between approx mately $£ 4,229$ and $£ 4,937$). Overtime is additional and ther
is a good pension scheme, sick- pay benefits, at least 4 weeks is agood pension scheme, sick-pay benefits, at least 4 weeks
holiday a year, and excellent prospects of promotion to senior management
Forfurther information, pleasetelephoneKathleenWatson
on Freefone 2281 orwriteto herat the ofllowing address: on Freefone 2281 or write to her at the following address:
IE Maritime Radio Services Diviion (WWB). IS8.11.2. R Rom 304, Landsec House, 23 New Fetter Lane,
London EC4A IAE. London ECAAIAE.

TELECOM

BROADCASTS ELECTRONICS ENGINEER

ENGINEERING TRAINING DEPARTMENT, EVESHAM, WORCS.

The BBC's Engineering Training Deparatment is situated in the
Worcestershire countryide and includes well equipenad Radio and Worcestershire countryide and includes well equiped Radio and faciities.
Duties:
Maintaining a ful range of professional radio and television soiadecasting equupment. This includes moditiations to ond dommis
sioning of broacicast equipment, the repair and realibraion of
 candidates who are unfanimiar with BBC equipment)
Requirements: Recent experience of maintaninn
Requrrements. Recent experience of maintaining electronic equip
ment. A sood cechnical knowledge of faudio and or video equipment
essential
A degree from a British University in electronics or electrical
HNC or HND (Electical Engineering or Applied Physics).
C \& Full Technological Certificate in Telecom munications. Salary, depending upon experience in the range of $£ 6630$ - 66600 ris Salary depending upon experience,
to $£ 7555$ plus 10% Shift
Pensionable Post. Re-location expenses considered.
Further Details: If you would like
Further Details: If you would likee to hear more and receive an
application form, please send a stamped addressed envelopeofat least
 ing Training Department, Wood Norton, Evesham, Worcs.
WR114TR. quoting reference number 80.E.2305/WW. Closing date Wr return of appplication forms, 14 days after publication.

Aerial Engitheers

(Broadcasting Systems)
Our current demanding programme of work includes the expansion of Independent Local Radio and the introduction of the fourth Television Channel. This provides excellent opportunities for Aerial Specialists at all levels - to strengthen those keen on entering this challenging field. We are small enough for you to be able to make your mark
in a professional and friendly environment but at the same in a professional and friendy environment buts
Senior Aerial Systems Engineers (up to $£ 9600$ p.a. under review)
Aerial Systems Engineers (up to $£ 8350$ p.a. under review)
To be responsible for the design and specificationacceptance and commissioning of aerial systems, high and low power filters, channel combining and separating equipment for UHF, VHF and MF services.
Aerial Maintenance Engineers (up to $£ 8350$ p.a. under review)
To be responsible for implementing a programme of preventive maintenance for transmitting and receiving
aerials, feeders, combining units and RF filters at TV, Radio and Link Stations. To provide a specialist corrective maintenance service, as necessary.
You should be qualified to degree/HNC level (or equivalent) and have substantial relevant experience (at the senior
level supervisory ability is essential). We would also be happy to consider new graduates or those with little experience with a genuine interest in broadcast engineering to start at a trainee level
You must be fit and able to climb tall structures; you must also hold a current driving licence and be
prepared to travel within the U.K. Starting salaries will be according to experience - the figures quoted above are under review. Generous re-location, car and travelling allowances are payable together with free life assurance and personal accident scheme and an excellent contrib
Most of these posts will be based at our Engineering Headquarters, here in Hampshire, although the opportunities for ap
Engineering bases.

Applicants (male or female) should send full details of qualifications and experience as soon as possible to Glynis Powell, IBA, Crawley Court, experience as soon as possible to
Winchester, Hampshire, SO21 2QA

Opportunities in Digital Electronics

Datek Systems Ltd., a subsidiary of the Mergenthaler-Linotype Group, are leading manufacturers of advanced intelligent terminals for the printing industry. We are a small, friendly company, based in Wembley and we need the following key people

Software

Development Engineer
Here is a unique chance to be in at the beginning of an exciting new project, as our design team commences work on a newgeneration machine. Candidates should have a minimum of two years' experience i applications software. Salary will be up to
Senior Test Engineer
This post affords an opportunity for an
engineer to further his/her career and extend his/her technical skills, by becoming head of a small team of engineers testing highly sophisticated systems. Several years experience in testing digital equipment is essential, together with the ability to direct and motivate others. The salary will be around £7,500 p.a.
Both the above posts are open to men and women and offer generous terms and expenses may also be available for the right candidates, if appropriate.
For further information and an application form, please contact: Miss Linda Bux, Datek Systems Ltd, 849 Harrow Road, Wembley,
Middlesex. Tel (01) 9040061.

D \triangle EYSTEMS
SYSTEMS LIMITED

Dlectronics Engineers

Submarine Cables

QATAR circa $\mathbf{£ 1 0 , 0 0 0}+$ bonus The Ministry of Communications and Transport, Qatar,
are seeking 2 Electronic Engineers with at least 10 years specialist communications experience, 5 of which have been in the operation and maintenance of submarine Applicants should preferably hold an engineering degree
and be aged between $28-45$ years old. These acedetween 28-45 years old. These are responsible and secure positions based in a
pleasant and stable part of the A rabian Gut pleasant and stable part of the Arabian Gulf.
The successtul candidates will be offered thre The successtul candidates will be offered three year
(renewable) contracts. free furnished accommodation and services. + weeks gratuity and 60 days U.K. leave per
annuun. family arirfares, interest free car loan and free Write or telephone for an application form, quoting
Ref: G. 1303 to:-Gordon Newton. Lunsdowne Recruitment Limited, Dessign House,
The Mull, London, W5 5LS. Tel: OI-579 666577610. Iansdowne

£25 REWARD

 Wortai vacancisis incuse.
 Sill

 £8.000 (Herts.).
TESTENGINERS for a wide range of RF and microwave navigational
beacocons. Very progressive firm with lots of chance to progress. To $£ 7.500$ (West

 (West Country).
For furrther details of these and other vacancies, please ring:

Charles Airey Associates "Probabiy the best known suppler of elecironic enaineers in the couniry"

WIRELESS WORLD. SEPTEMBER 1980
Appointments

INNER LONDON EDUCATION AUTHORITY LEARNING MATERIALS SERVICE TELEVISION CENTRE Thackery Road, Battersea SW8 VIDEOTAPE ENGINEER (ST3) The Learning Materials Service produces teaching programmes in colour fho the shools and abroad. There is a Television Studio and mobile unit and a film unit. The programmes are recorded in the
master
master contro section on broadcast standard videotape (CCIR formats master control section on broadcast standard videotape (CCIR formats
A and C). This section carries out all edititing and post-production work, and provides
ette formats.
A vacancy has arisen in this section, which consists of four senior engineers. Applicants will be expected to have good operational experience of videotape, with a thorough understanding of the
echnical features, and to have appropriate technical qualifications. A technical fatures, and it have appropriate technical qualifications. A
general grounding in colour television theory is essential. The successful candidate will be expected to undertake maintenance of the tape machines and associated equipn
functions. Some overtime is required.

Salary within the scale $£ 7904$ to $£ 8498$.
Application forms from EO/Estab, 1C Room 365, The County Hall,
SE1 Telephone No. $6337456 / 8848$.

MANAGEMENT \& EXECUTIVE SELECTION

COMPUTER \& DIGITAL ELECTRONICS ENGINEERS Our specialist consultants have knowledge and experience that
could bevital to vour carer progression. Jobs, Companies (UK \&
Internationall) Interview and Proaression techniques - information and advice for each applicant.

Suite 2016 Albany House
324 Regent street Londion wh
EXECUTIVE SELE

FIELD ENGINEER WEMBLEY

ARAMEO (A)

The COMPANY WITH A FUTURE

 ...for ENGINEERS E TECHNICIANSENGINEERS $£ 11,450$ to $£ 19,200$
TECHNICIANS $£ 10,100$ to $£ 14,500$ per contract year after tax.
Aramco are involved in many varied projects in Saudi Arabia that will last for many years. The COMMUNICATIONS PROJECTS MANAGEMENT DEPARTMENT is responsible for the communications networks throughout the Eastern Provin
Arabia and need skilled Engineers and Field Technicians in the following fields:
ENGINEERS \& TECHNICIANS
Sf for the
systems. Field work covers substations, remote terminal units, pipelines etc. You will be systems. Field work covers substations, remote terminal units, pipelines etc. You will
involved at module, unit and systems 1 evels using a range of testequipment, digital
dial Engineers should have B.Sc or HNC in Electricial or Electronic Engineeringplus minimum Engineers should have
of 4years relevant expe
relevantexperience.

DATA ENGINEERS with at least5 years experience in systems engineering on data terminalling equipment and analogue systems

COMMUNICATIONS ENGINEERS to act as technical consultants and s.
COMMUNICATIONS ENGINEERS
for communications hardware
including local distributions and coaxial versus faired cables, multiplexerers, muttichannel radio bears.VHF/(UH
electronic switching
Contracts are single status and renewable yearly with low-Costair conditioned accommotation and rree meosict. Mare proven. cinema, IV, swimmingools etc. Married men receivel eave attere each 4 month period on.
14,14 and 5 day cycle. Single men receive 30 days leave at end of each year. Fares Paid.
Avalid (IKdriving licence is A valid UK driving licence is requiredforall the above positions
Certain senior positions wi
of one year's employment.
Please write with brief er details etc.an WW/20/8to 5 EAST PPRAAE,
HARROGATE
NOBTH HARROATEE,
NORTH YORKSHIRE HGI 5 LF

UNIVERSITY OF ABERDEEN ELECTRONICS
WORKSHOP SUPERVISOR
(Technician Grade 6)

Appointments

Challenging positions at home and abroad

RADIO TECHNICIANS COMMUNICATIONS ENGINEERS Plessey EAE design, install
industry, at home and abroad.
industry, at home and abroad. Due to rapid and continuing expansion in our activities, we constantly requir
Radio Technicians, with experience of $H F, M F, V H F$ and UHF, and Engineers Radio Technicians, with experience of HF , MF, VHF and UHF, and Engineers
(preferably qualified to HNC level or above) in the fields of Microwave, Multiplex and Tropospheric Scatter
In the North Sea, earnings are in the range $£ 9,000$ to $£ 12,000$ p.a. Overseas earnings could be up to $£ 20,000$ - plus tax concessions and generous home leave The work is demanding, but rewarding, offering you the chance to use your skills and your initiative to the full
The company is based in Great Yarmouth, with offices in Aberdeen and Lerwick egal and temporan is necessary, we will give generous assistance with removal Please apply, with ,
Plessey EAE Limited, Dept WW, Offshore House, 284/285 Southtown Road Gt. Yarmouth, Norfolk NR31 OJB Telephone 049358541

Experimental Officer (Electronics)
Greenford
Middx.
Our Research Central Services Unit is undertaking an increasing
amount of designandconstructional electronicswork. The application of microprocessor technology to the scientific effort is particularly important. Whist routine construction work is dertaken elsewher there is a great need for a technical officer to help in constructing
prototype equipment during the development phase. Applicants qualified ONC/HNC or equivalent should have previous experience in electronic construction. Some experience with printed circuit boards and an ability to translate circuit diagrams into practice is essent, making use of microprocessors and needing some degree of
mennt innovation is required.
Starting salary within the range $£ 4270$ to $£ 6450$ according to qualifi
cations and experience. Bonus and non-contributory pension scheme Please apply to: Miss E. M. Butler, Personnel Department UB6 0HE. Tel: 01422 3434, ext. 180, quoting ref. ZH. 334 .
Glaxo Group Research Ltd.

H.N.C. Applied

Physics
A tyo--year day-release course
noluding ele physics, computing , and spec troscopy. For technicians and
others with suitable O.N.C. The Physics Department also The Phylics Department also
offers fulltime courses leading
 B. Sc.(Hons.) in Combined
Science. and M. Sc. in the
Physical Basis of Further details of all coürses
may be obtained from: The Secretary, Physics DeParmert (Ref. WW6). THE LONDON, Holloway, Lon-
don, N7 $8 D B$ (Tol: $01-607$ don, N7 8DB (Te
2789, Ext. 2180).
The Polytechnic of NorthLondon

Wreless world, September 1980
Appointments

Radio Technicians Work in Communications R\&D and add to your skills

At the Government Communications Headquarters we carry out research and development in radio communications and their security, including related computer applications. Practically every type of system is under investigation, including long-range radio, satellite, microwave and telephony.
Your job as a Radio Technician will concern you in developing, constructing, installing, commissioning, testing, and maintaining our equipment. In performing these tasks you will become familiar with a wide range of processing equipment in the audio to microwave range, involving modern logic techniques, microprocessors, and computer systems. Such work will take you to the frontiers of technology on a broad front and widen your area of expertise - positive career assets whatever the future brings. In the rapidly expanding field of digital communications, valuable experience in modern logic and software techniques will be gained.
Training is comprehensive: special courses, both in-house and with manufacturers, will develop particular aspects of your knowledge and you will be encouraged to take advantage of appropriate day release facilities.

You could travel - we are based in Cheltenham, but wo have other centres in the UK, most of which, like Chetenham, are situated in environmentally attrac

locations. All our centres require resident Radio | Technicians and can call for others to make working visits. |
| :--- |
| There will also | There will also be some opportunities for short trips abroad, or for longer periods of service overseas. You should be at least 19 years of age, hold or expect to

obtain shortly the City and Guilds Telecommunications Technician Certificate Part I (Intermediate), or its equivalent, and have a sound knowledge of the principles
of telecommunications and radio together with of telecommunications and radio, together with
experience of maintenance and the use of test equipment. If you are, or have been in HM Forces your Service trade
Int may allow us to dispense with the need for forma qualifications.
Registered disabled people may be considered Pay scales for Radio technicians start at $£ 4640$ per annum,
rising to $£ 6525$, and promotion will put you on the road to rising to 10525 , and promotion
posts carrying substan you porsts corrtime and on-call work, paying good rates.
for

Get full details from our Recruitmen Officer, Robby Robinson, on Cheltenham (0242) 21491, Ext 2269, or Write to him at GCHO, Oakley, Priors
Road, Cheltenham, Glos GL52 5AJ. will invite suitable applicants (expenses pai

Radio Communications

 Electronics Engineers and Software DesignersMid-Sussex-S.W. London Salaries up to $£ 8,000$ To join our expanding R\&D Laboratories covering a wide range of R.
spectrum, from L.F. to V.H.F. Equipments include transmitters a de transmitters and
navaids and radio monitoring remote computer-controlled systems
Electronics Engineers should have experience in transmitter or receive
design, analogue or digital ciravit despen Sontware Designers should be experienced Programmers with an interest in control, signal processing or navigational software.
Attractive salaries are complemented by excellent prospects and
generousbenentits
Contact: David Bird, Redifon Telecommunications Limited
Broombill Contact: David Bird, Redifon Telecommunications Limited,
Broomhill Road, Wandsworth, London, s.W.18. Phone: 01-874
7281 (reverse charges).

NeneCollege Northampton
Lecturer I/II in
Electrical Engineering
Candidates should be graduates or Chartered Engineers with recent The successful applicant will be able to lecture in the fields of electronics and instrumentation

Salary Scales:

point of entry depending on previous experience.
Application forms and further particulars are available from
The Dean, School of Technology, Nene Colle Avenue, Northompton, to be returned within fourteen days of

Appointments

Electronic EngineersWhat you want, where you wan!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 8000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application

TJB ELECTROTECHNICA PERSONNEL SERVICES 12 Mount Ephraim, Tunbridge Wells,
Kent. TN4 8AS. Kent. TN4 8AS.
Tel: 089239388 TJB

ELECTRONICS WORKSHOPS ENGINEER

(INSTRUMENT MAKING)
We are looking for an energetic and technically sound
to ioin us in this special ist/assistant management post. You should have proven skills in the fabrication and wiring of You should have proven skils in the fabrication and Wiring of
control panels and in the making of scientific instruments. You must
have the ability to carry out develop have the ability to carry out development work without supervision and
will preferably have a knowledge of solid state technology and wicroprocessors. We see you as holding an appropriate ONC/HNC but would be
prepared to offer day release facilities if you are still in the process of
gaining your prepared to offer day release facilities if you are still in the process of
gaining your qualification. We offer a prgogressive salary, pension and life assurance, flexible
working hours and assistance with relocation expenses in an approINTERESTED?
Then write or phone for an application form to the Recruitment Rfficer, Unilever Research Port Sunight Laboratory, Quarr Road East, Bebington, Wirral, Merseyside, L15AC.
$\mathbf{0 5 1 - 6 4 5} \mathbf{2 0 0 0}$, ext. 8408. Please quote ref. PS715A.

TOP JOBS IN ELECTRONICS

 Posts in Computers, Medical,Comms, etc. ONC to Ph. P. Free service: Phone or write BUREAUTECH,
AGY, 4 SEELVAGE LANE,
 ${ }^{\text {Lonsi. }}$
unverirn cuutes canaur TECHINCIAN (Grade 5) Timbecinilitili (riade 5)

foreign and commonwealth office telecommunications

TECHNICIANS

 For an appicication tom anoly tec:

Foreign Anocritiment Section

Appointments $_{\text {" }}$

Professional Careers in Electronics

All the others are measured by us... At Marconi Instruments we ensure that the very best of innovative design is used on our range of communications test instruments and A.T.E. We have a
number of interesting opportunities in our Design, number of interesting opportunities in our Design,
Production and Service Departments and we can Production and Service Departments and we can offer
attractive salaries, productivity bonus, pension and sick pay schemes together with help over relocation. . If you are interested to hear more, please fill in the following details:-

Return this coupon to John Prodger, Marconi Instruments Limited, FREEPOST, St. Albans, Herts AL4 OBR. Tel: St Albans 59292
marconl
instruments

Link Electronics is a successful British Company active in the international sales of Broadcast television and radio equipment. We manufacture a
range of studio products from colour cameras to range of studio products from colour tame largest
simple D.A.s. We are also one of the later suppliers of Outside Broadcast vehicles, television and radio studios, all designed and built in
Andover for a worldwide market.

TECHNICAL SALES ENGINEER

To be involved in the active selling of television broadcast equipment.
The successful applicant should have a sound
technical electronic background preferably with at least three years' experience within the Broadcast Industry, but not necessarily in Sales.

TV SYSTEMS ENGINEERS

Experienced senior engineers to work on the design and project management of Outside
Broadcast vehicles and television studios. This is Broadcast vehicles and television studios. This is
an opportunity for engineers to become involved in projects from their initial design concept through
manufacture to delivery and installation. manufacture to delivery and installation.
Our custom-built systems require a high degree of customer contact at engineering level from the
initial design, to customer training after compleinitial design, to customer training after comple-
tion of the contract, both within the U.K. and overseas.
Applications are invited from engineers with a knowledge of $T . V$. studio engineering gained from,
experience in this type of work or from experience experience in this type of work or from experience in the operation side of television.

Employment benefits include excellent salary generous holidays, free life and health insurance, pension scheme, subsidised meals and relocation expenses.

Please apply for further details and application forms to Jean Smith at the address given below.

- Link Electronics Limited - $\begin{aligned} & \text { North Way, Andover, } \\ & \text { Hants, SP10 5Al. }\end{aligned}$

ELECTRONICS North Way, Andover, Telephone: (0264) 61 Telephone: (0264) 61345

Dlectronics R\&D

Join us in the forefront of technology

Take your pick

HF-VHF-UHF-
Microwave Optics \& Acoustics A challenging and full career in Government Service. Minimum qualification - HNC. Starting salary up to $£ 6,737$ (under review). Please apply for an application form to the Recruitment Officer (Dept. WW9) Recruitment Officer (Dept. WW9)
H.M. Government Communications Centre, Hanslope Park, Milton Keynes Mk19 7BH.

ITN
 ELECTRONIC ENGINEER

Independent Television News Limited require an Electronic
Engineer to service a wide range of broadcast audio equipment. Engineer to service a wide range of broadcast audio equipment,
including sound Mixing desks. Audio Tape Recorders and Film
Sound Recording equipment, at their West End Studios. End Studio
Applicants should be familiar with microprocess
applied to sound and machine control systems.
This challenging situation provides an interesting future for the
right person.
Salary rangene $£ 8,600$ to $£ 11,400$ p.a., dependent on qualifications
and experience.
Benefits include contributory pension scheme, free life
$41 / 2$ weeks annual holiday, subsidised staff restaurant.
Telephone the Personnel Office on 01-637 3144, quoting ref.
no. 40763.
Telephone
no. 40763 .

ROYAL OBSERVATORY, EDINBURGH
PROFESSIONAL AND TECHNOLOGY OFFICER GRADE I
There is a vacancy in the Technology Unit at the Royal Observatory, Edinburgh, for an electronics engineer to work on the development
of prototype astronomical instruments such as photometers, polarimeters, measuring machines and guidance and acquisition systems.
The Observatory provides Technological support to several major
national astronomical facilities in the U Initially the successful candidate will work with Officers at PTO II,
III and IV levels designing. developing and commission ing cquiusition and guidance systems and other instruments for use on
ihe 3.8 metre infrared telescope situated in Hawaii.
These systems incorporate a variety of detectors including cooled
SIT TV cameras, and microprocessor controlled digital image SIT
storage and disporay. Special techniques are bentrong digital image
being developed to present complex information in a simplified form to assis
astronomers working in a difficult environment

The successful candidate may be required to work abroad on short
term detached duty or on postings of eerm detached duty or on postings of up to three years. It is a
pre-requisite of working in Hawaii that a special high-altitude pre-requisite of working in Hawaii that
medical examination be taken and passed.

Applicants are expected to have qualifications at degree level in the
appropriate subjects leading to corporate membership of an appropriate subjects leading
Experience in one or more of the following fields would be an advantage: Detectors, Detector Arrays, CCDs and associated amplifiers, Iow light level TV Systems, Integration and digital
image storage techniques, application of microprocessor hardware image storage
and software.
Salary will be in the range $£ 8600-£ 10200$ per annum. There is a annuation scheme.
Application forms from The Personnel Officer, Royal Observatory, Blackford Hill, Edinburgh EH9 3 HJ . Application

Appointments

Telecommunications Officers

 Up to $£ 7950$in London and at Hanslope Park, Milton Keynes, for work in the
allation, modification, maintenance and operation of $H F$, $H F$, UHF and microwave receivers, associated test equipment, recorders,
elephone and teleprinter equipment, electronic ancillary apparatus elephone and teeprinter equipment, electronic anciliary apparatus
some using analogue and digital techniques), voice frequency elegraph and other specialised equipment.
Candidates must have served an apprenticeship or have had
equivalent training. They should normally have 3 years' releva equivalent training. They should normally have 3 years' 'elevant
experience, and dold ONC in Engineering (with passs in
Ilectrical
 hho have had suitable training and at least y years' appropriate service (as Staff Sergeant or equivalent) will also be considered. Salary: $£ 5310-£ 7170$; London $£ 780$ more. Starting salary may be
above the minimum for those with additional relevant experience. above the minimum for those with adatitional relevant exp
Promotion prospects. Non-contributory pension scheme. For further details and an application form ito be returned by
September 12, 1980) write to Civil Service Commission, Alen September 12, 1980) write to Civil Service Commission, Alencon
Link, Basingstoke, Hants, RG21 1JB, or telephone asasingtoke Link, Basingstoke, Hants,
(0256) 68551 answering service operates outside office hours).
Please quote $T / 5424$.

FOREIGN AND COMMONWEALTH OFFICE

LECTURING WITH A DIFFERENCE
 ndustria in intrution but an appeaing blend of both. The Coliege is pleasantly
situated in Chemsord and hhe emembers of staff are responsible for training the DIGITAL SYSTEMS
vacancessent of apolications including the stems and equipment ond
 electronics with knowiedge of digitial techniques, or several y y
experience. Teaching experience desirabte but not essential.
TELECOMMUNICATIONS
ALecturer is requiredio instruct in ine principles Sfunctioning and maintenanco
of a wide range of telecommunications systems and equipment. The range

Applicants should have a sufficient combination from a degree or equivalent
qualification, teaching experience in similiar technology and three to four years

Applications to Frank Braybrook, GEC.Marconi Electronics Limited,
Marconi House, New Stroet, Cholmsord, Essex CM1 1PL. Tolephone
helmstord (0245) 353
GEC-Marconi Electronics Ltd.

FIELD SERVICE

Digital Electronics Engineers
ONC, HNC or equivalent required by clients for a variety of interesting posts.

TRAIN in Zurich for field service
in Process Control: Berks/M4 area.

USA product training in Ulltra-
sound medical systems: W London/M4.

Many more on file for engineers
with ."hands on": experience of Wut PTS. CNC. Video. Commer-
cial \& Industrial Data process. Ring $01-4647714 \times 502$ for
registration form. (5)

QUEEN MARY COLLEGE University of London
ELECTRONICS ENGINEER
Aplications are invited for the newly Separtment, induduing Astrophysics, Fal
Please apply by letter, giving age, qualifida) The Secretary (W.W.), Queen Mary College.

JUNIOR DEVELOPMENT

 ENGINEERSELECTRONICS
John Player and Sons a leading manutatcturer of tobacco products, ofter the
poportanity to young electronics engineers to gain valuable practical experience
 jeneration cigarette making and packaging machines are undergoing pre
production trials. These machines are equiped with incrasing numbers o modern electronic control circuits using the latest technological. advances

 raining of others in the maintenance of these machiness on the production flior
We are looking for men or women who are qualified to HNC or equivalent, and ho have 2 years experiencein one ors more of the following areas.
electronic
b) electronic oonto and log
porocsi
prontrol systems
microporocessors

 Ahere applicable. a can be obtained by phoning Nottingham (STD 0602) 7871 Application torms can be ob
Exension 345 or writing to

Lorna Blayney
JOHN PLAYER AND SONS

KING'S COLLEGE HOSPITAL
Applications are invited for the post of CHEPARTMENTAL
in the Department of Medical Physics,
Kings Coleege Hospitit. The Dopart
ment ment provides a cospmerehensiepar- ser-
vice to the King's Health District
ite (Teaching) and some services to
hospitals in the South East Thames
houn
 Gradel is reauired to take day to day
Cespon las responsibility for the technical work of
the Department, which employs the Department, which employs
approximately fitieen technicians.
The successtul candidate will bee
 Health Service Physiss Department
and will be expected to have a good
knowied ongo of trese knowledge of of ectent dayd digitial ana
logue electronic tech niques and

Slary: $\mathbf{E 7 0 8 2}$ - 8207 insive. For further intormation contacat the
Dearment of Medical Physics on exi
235

quoting reference number sA/ 200
Closing date:

UNITED NATIONS

Invites Applications for the following positions at New York Headquarters
 1. CHIEF, TECHNICAL SERVICES SECTION (P-5)

Supervises and specifies arrangements for the installation, operation equipment associated with the United Nations conference servicing and radio and television programming operations. This includes a wide range of broadcast standard audio and video Responsibilities include sirecting athe work a
Respanction of construction budgets
Snould have advanced university degree in relevant engineering discipline, good electronic projection and cost control, with 13 years' professional experience Level P- 5 carries net base salary per annum from US $\$ 24$,
dependants) plus post adjustment from US $\$ 11,627$ (singe) and US plus post adjustment from US\$11,627 (single) and US $\$ 12,584$ (with dependants)

VA. 80-D-DAM-109-NY

2. CHIEF, TELEVISION AND FILM UNIT (P-4)

Controls the television and film unit which works to full profe
Is responsible for system development and specifying operational and maintenance techniques and for assessing needs and making recommendations for purchase of equipment.
Supervises the operations in the technical areas and maintains contact with outside TV networks Should have
Should have advanced university degree in electrical engineering with eight years' professional experience in the operation and maintenance of television and film equipment.
Level P-4 carries net base salary per annum from US $\$ 20,209$ (single) and
dependants) plus post adjustment from US $\$ 9779$ (dependants) plus post adjustment from US $\$ 9,779$ (single) and US $\$ 10,527$ (with dependants) per
annum.

VA. 80-D-DAM-108-NY

3. ENGINEER (TELECOMMUNICATIONS) (P-4)

Supervises the technical aspects of conference servicing operations with particular regard to simultaneous interpretation, audio distribution systems and electronic voting equipment Responsible for system development and design and for the installation of these facilities both at Headquarters and for conferences away from headquarters
Should have advanced university degree in an engineering discipline, with eight years' professional experience
VA. 79-D-DAM-357-NY
APPLICATIONS: Please complete two copies of United Nations Personal History Form (P. 11), or send detailed curriculum vitae to: Professional Recruitment Service, United Nations, New York, N.Y. 10017, USA. Mention the date of birth and nationality, and quote the Vacancy Announcement number

Do you want to work in electronics as a Technician?

At the Government Communications Headquarters in
Cheltenham, we carry out research and development communications and their security, including related computer
applications. applications. Practically every type of system is under
nvestigation, including long-range radio, satellite, microwave and elephony.
Your job as a Radio Techician will concern you in developing,
constructing, installing, com is isioning, testitg and maintaining
our equipment. Such work will take you to the tront ies ont Constructing, instaling, commissioning, testing and maintiai
our equiment. Such work will take you to the frontiers of
echnology on a lechnology on a broad front and widen your area of expertise
oositive career assets whatever the future brings. In the rapidly positive career assets whatever the future brings. In the rapidy
expanding field of dioital ommunications valuable experience in
modern logic and software technicues will be gained.
Training is comprehensive: special courses, both in-house and Training is comprehensive: special courses, both in-house and
with manufacturers, will develop particular aspects of your
knowledge and you will be encou araged to take advantage of knowledge and you will be encou
appropriate day release facilities.
You should hold or expect to obtain shortly a TEC Certificate in
Telecommunications Engineering or the City and Guilds Teiecommunications Engineering or the City and Guilds
Telecommunications Technician Certificiate Part 1 (.ntermediate).
or its equivalent, and have a sound knowiedge of the principles of or its equivalent, and have a sound knowledge of the principle
telecommunicatios and racio, together withe experience of
maintemance and the use of test equipment. If you are or have ben in H.M. Forces, your Service trade may allow us to dispense
with with the need for formal qualifications.

Pay scales for Radio Technicians start at $£ 4,640$ per annum, rising to $£ 6,525$, and promotion will put you on the road to posts
carrying substantially more; there are also opportunities for carrying substantially more: there are also opportunities for
overime and on-call work paying good rates. Starting pay may be
adjusted to $£ 5.04$ depending on relevant experience.
Applicants possessing the necessary formal qualifications (e.g.
TEC or $C \& G$ Telecommunications Technician Certificate) but TEC or $C \& G$ Telecommunications Technician Certificiate) but
with insufficient parctical experience tor Readio Techniciann posts
nity
 scales for these posts are $£ 3,825$ per annum at age 19 to $£ 4,640$
at age 24 . Successul completion of our practical training course
and at ase 24. Successful completion of our p
will lead to regrading to Radio Technician.
A non-contributory pension scheme provides cash and pension
benefitis based on salary and length of service. Annual leave is 4 weeks (for RT). plus $10^{1 / 2}$ days' public and privilege holidays.
Get full details from our Recruitment Officer, Robby
Robinson, on Cheltenham (0242) 21491, Ext. 2269, write to him ach ach, oakley, Priors Road, Cheltenham,
Glos. GLL5 5 AJ. If you seem suitable we will invite you to Glos. GL52 5 AJ . If you seem suitable we w,
interview in Cheltenham-at our expense.

Communications
Oakley, Priors Road, Cheltenham GLL.52 5A
CLASSIFIED ADVERTISEMENTS
Use this Form for your Sales and Wants
To "Wireless World" Classified Advertisement Dept., Dorset House, Stamford Street, London, SEI 9LU
PLEASE INSERT THE ADVERTISEMENT INDICATED ON FORM BELOW

- Rate $£ 2$ PLER LINE. Average six words per
- Name Minimum Tdress to be lines. included in charge name.
if used in advertisement.
Box No. Allow two words plus $£ 1$
In
- Cheques etc., payable to "Wireless World

remittance value..................................enclosed
pLEASE WRITE IN BLOCK LETTERS. CLASSIFICATION
NUMBER OF INSERTIONS

MUSICAL INSTRUMENTS LIMITED
urgently require fully-qualified

ELECTRONICS
TECHNICIAN

ARTICLES FOR SALE

List. AlR BAND FREDUENCIES

Test and Maintenance Technician
\qquad
Kent up to 66,350

Neth 33 yoart orta
AUDIO FREQUENCY TBANSFORMERS O EVERY TYPE
YOU NANE IT! WE MAKE IT!
OUR RANGE INCLUDES
Microphone transtormers (all ives) Microes

 300 walts or more.

 TRANSFORMERS Many sla.
OUR CLIENTS COVER ALARGE NUMBER OF BROADCASTING
AUTHORITIES MIXING DESK MANUFACTURERS RECORDING
 COMMONWEALTH E.E.C. USA, MIDDLE EAST EtC

SOWTER TRANSFORMERS
E. A. sowTER LTD. (Eatacturishod and Da41). Rogen No. England 303990

savics	
gA4 TRA1	FAST PCB
GHYTOTOAI	PROTOTYPES

	SAEME DAY DESPATEH
nempasery	
	为
\%	Nex
AGR ${ }_{42}^{\text {Al }}$	

CIRCOLEC

the complete electronic manufacturing service Let us realise all or any part of your project from prototypes to
production, from artwork design and component sourcing, through assembly and test to final dest ande, packing and delivery We also provide a test, repair and modification service to suit your
individual requirement For compeetitive prices and fast turnaround contact

CIRCOLEC, 1 Franciscan Road, Tooting, s.w. 17

COMPUTERS

yearn to really understand computers - how they work and how they are
programmed. Home study course with skilled Tutor available ensures success. No previous experience from:- Colour brochure
British National Radio Electronic School.,
4 Cleveland Rd, St. Helier. 4 Cleveland Rd, St.Helier.
Jersey, Channel Islands. 60

TUBE REBUILDING PLANTS CESS, all TV tubes can ${ }^{\text {internationally }}$ St at the best bil AAL
photography. Phone 06477 -573 instant quote or write to AKT1. tonhampstead, Devon.
SMALL BATCH PCE's, produced Hetails: Winston Promotions Tel. 01-405 $4127 / 0960$.

 printed
deliveries
tation on
driulting
I.H.S. SYSTEMS Due to expansion of our manufac-
Puring facilites we are able to udder
take assembly and testing of circuit boards or oromplete unitsing of diritrin to
contract development.

 Telephone to arrange for one of our
-engineers to call and discuss your
 TEL. 01-253 4562 PRINTED CIGCuIT

 PCE ARTWORK DESICM SEVICE

PCB ASSEMBLY CAPACITY AVAILABLE
Low or high volume, single or double
sided, we specialise in flow line
Sissembly
assembly. Zevith flow soldering
Using the Zevar
system and on line cutting, we system and on line cutting, we
sare able to odiver high quality
assemblies on time, and competivetively priced.
Find out how we can help you with
your production. phone or write. We will be peleased. thone of or write. We
discuss your requirements. TW ELECTRONICS LTD. 120 NEWMARKET ROAD
BURY ST EDMUND, SUFFOLK
TEL: 02843931 Sub-contract assemblers and wirers to
the Electronics Industry
(9068)

CIRCOLEC

ELECTRONIC DESIGN SERVV

FOR CLASSIFIED ADVERTISING RING ANTHONY HADLEY ON 01-261 8508

NUCROSV5En58i
 Wembley Conference Centre, London

CALL FOR PAPERS

Microsystems ' 81 is the fourth conference and exhibition to meet the rapidly changing information needs of managers and engineers developing and using microprocessor-based systems.
The first two days of the conference are dedicated to design engineers seeking answers to problems encountered in designing and implementing microsystems through discussion and sharing experiences with other experts in commerce and education.
Microsystems '81 is sponsored by the publications Microprocessors \& Microsystems, Computer Weekly Systems International and Practical Computing

SCOPE

```
case studies
communications
design aids
distributed processing
education and trai
interfacing
```

- multimicroprocessors
project management
real-time languages
signal processing
software development
standards
- testing

Synopses of papers for consideration should be sent by 12 September, 1980 to: Robert Parry; Microsystems '81, PO Box 63, Westbury House, Bury Street, Guildford, Surrey GU2 5BH.

ELECTRO-TECH COMPONENTS LTD. 364 ED'GWARE ROAD, LONDON, W.2. TEL: 01-723 5667

WILL TAKE PLACE
 29th-31st OCTOBER 1980 WEST CENTRE HOTEL, LILLIE ROAD, LONDON
 10 am to 6 pm
 (Closing 5 pm on the last day)

The response to the second exhibition for professional and business people has been overwhelming, justifying the decision to take the whole hall at the West Centre Hotel

An additional feature to this year's show will be a Workshop/Forum, where sponsoring company's will hold an open discussion on the latest related topics. Entry to this will be free

This year's event is designed as it's title suggests, to interest not only those professionally involved with viewdata \& teletext, but also those businessmen whose companies are able to use viewdata or are already doing so.

The event has over 40 exhibitors including: Sony, GEC, Information Services, The Post Office, Langton Information Services, CAP CPP,

Granada TV Rental, Fintel Eastel, Chery Electrical, Centronics, Link House Communication, Ansafone, STC, ITT, Bishopsgate Terminals, Oracle (London Weekend TV), and Barco Video Terminals (C.W. Cameron Ltd), showing a wide variety of exhibits such as:

Editing equipment basic and advanced, monitors and user terminals, private viewdata systems and equipment, peripherals including printers, magnetic media recorders, light pens, graphic design aids and keyboards, accessories such as camera attachments, anti-glare sprays screen hoods and masks, telephone timers, microcomputers for telesoftware and other "umbrella" activities and facilities, software services for advanced editing, publications, semiconductor devices and many more.

ENTRANCE TO THE EXHIBITION IS FREE BY REGISTRATION

Advance tickets are available on demand from the organisers at:
 * World-wide proven reliability. * Low servicing costs.

* $20 \mathrm{~K} /$ volt sensitivity and high accuracy. * Fully protected against overload. * Large range of inexpensive accessories. * 12 month warranty, backed by a full after
sales service at E .B.Sole U.K.Distributors sales service at E.B. Sole U.K.Distribut
Prices from $£ 16.60-£ 32.00+$ VAT Prices from $£ 16.60-£ 32.00+$ VAT
Send for full colour leaflet and prices on Send for full colour leaflet and prices
whole range including accessories. - - ELECTRONIC 1 기 = BROKERS LIMITED 49.53 Pancras Road, London NW1 $20 B$.
Tel: 01.837. 7781 . Telex: 298694.

INDEX TO ADVERTISERS SEPTEMBER
Appointments Vacant Advertisements appear on pages 134-149

overseas advertisement

Hungany: Mrs E Eitit, Bajusz, Hungexpo Advertising Agency,

\qquad

STEP INTO A NEW WORLD
 mมม Toussovel

For beginners or professionals, the Maplin catalogue will help you find just about everything you need for your project.

Over 5,000 of the most useful components - from resistors to microprocessors - clearly described and illustrated.

Catalogue now available in all branches of WHSMITH 密 Price $£ 1.00$

Easily adjustable for most sizes I of flex and cable. Fitted with extra strong spring for automatic opening. Easy grip handles I and handle
and handle
locking device.

- locking device.

Handy Dispensers (All prices inc. V.A.T.T.) Size 19A All electrical work

97p
Size.PC15 For small components Size AR140 Metal repairs Size AL150 Aluminium Size SS160 Stainless Steel

Groov-Guard XL-2

Anti-static liquid and record preservative.
Following years of research, Bib laboratories have developed GroovGuard XL-2, Anti-static Record Preservative. When applied to the record, eliminates static charge for the expected life of the record. Another advancement with Groov Guard XL-2 is that it reduces the frictional wear of the record surface thus giving extended life. Safe pump action dispenser. Non-flammable

Non-toxic

Ref. 27
E. 2.48 inc. VAT

Bib
In difficulty send direct, plus 40p.P \& P. Send S.A.E. for free copy of colour catalogue detailing complete range. Bib Hi-Fi Accessories Limited, Kelsey House, Wood Lane End, Hemel Hempstead, Herts., HP2 4RQ.

Cassette Fast Hand Tape Winder

The Bib Cassette Fast Winder enables you to wind tape in one cassette whilst you are listening to another cassette. If you have a battery recorder, always use the Fast Winder to save the high battery consumption when fast winding. It winds a C. 90 cassette in 60 seconds - faster than most recorders. Ref. $78 \quad$ £1.66 inc. VAT

[^0]:

 B2C CDC-100 M
 MEDELEC

 U/V. ${ }_{1225}$

 \qquad

 $$
 \begin{aligned}
 & 700 \\
 & 325
 \end{aligned}
 $$

 Maintrame for 4 Pug it
 TELEOUPMENT
 O53A.

 Imease
 Oscilloscope Plug-ins
 St

 난․ +
 20 Dual Trace DC-105 M

 Oscilloscoi Tese statorage)
 DYNAMCO
 Into. DC-30MHz. Dual race.

 \qquad

 $\begin{array}{r}100 \\ 30 \\ 50 \\ 225 \\ 180 \\ 375 \\ 175 \\ 140 \\ 75 \\ 410 \\ 370 \\ 450 \\ 525 \\ 440 \\ 400 \\ 325 \\ 650 \\ \\ \hline 525\end{array}$
 675

[^1]: fig. 9. Counter logic contro/s the 8-bit memory addres

[^2]:

